Cargando…
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
Active learning is a technique for maximizing performance of machine learning with minimal labeling effort and letting the machine automatically and adaptively select the most informative data for labeling. Since the labels on records may contain sensitive information, privacy-preserving mechanisms...
Autores principales: | Kurniawan, Hendra, Mambo, Masahiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689508/ https://www.ncbi.nlm.nih.gov/pubmed/36359635 http://dx.doi.org/10.3390/e24111545 |
Ejemplares similares
-
Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Privacy-preserving cancer type prediction with homomorphic encryption
por: Sarkar, Esha, et al.
Publicado: (2023) -
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
por: Yang, Wencheng, et al.
Publicado: (2023) -
Privacy-preserving approximate GWAS computation based on homomorphic encryption
por: Kim, Duhyeong, et al.
Publicado: (2020) -
Author Correction: Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021)