Cargando…
Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge
Raw ground meat is known as a transmission vehicle for biological agents that may be harmful to human health. The objective of the present study was to assess microbiological quality of the ground meats. A total of 280 samples of local and imported chilled meats were randomly collected from retail s...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689540/ https://www.ncbi.nlm.nih.gov/pubmed/36359489 http://dx.doi.org/10.3390/diagnostics12112645 |
_version_ | 1784836560799137792 |
---|---|
author | Alzaben, Feras Fat’hi, Shawkat Elbehiry, Ayman Alsugair, Maha Marzouk, Eman Abalkhail, Adil Almuzaini, Abdulaziz M. Rawway, Mohammed Ibrahem, Mai Sindi, Wael Alshehri, Turki Hamada, Mohamed |
author_facet | Alzaben, Feras Fat’hi, Shawkat Elbehiry, Ayman Alsugair, Maha Marzouk, Eman Abalkhail, Adil Almuzaini, Abdulaziz M. Rawway, Mohammed Ibrahem, Mai Sindi, Wael Alshehri, Turki Hamada, Mohamed |
author_sort | Alzaben, Feras |
collection | PubMed |
description | Raw ground meat is known as a transmission vehicle for biological agents that may be harmful to human health. The objective of the present study was to assess microbiological quality of the ground meats. A total of 280 samples of local and imported chilled meats were randomly collected from retail shops in Buraydah City, Saudi Arabia. The meat samples were microbiologically analyzed using standard methods, peptide mass fingerprinting (PMF) technique, MicroScan Walkaway System (MicroScan) and qPCR System. The imported meat was more bacterially contaminated than local meat, with variable contamination degrees of Staphylococcus aureus (40.33%), Escherichia coli (36.13%), Hafnia alvei (7.56%), Pseudomonas spp. (6.72%), Salmonella spp. (5.88%) and Aeromonas spp. (3.36%). PMF verified all the isolated bacteria by 100%, compared to 75–95% achieved by MicroScan. The gene encoding flagellin (fliC) was recognized in 67.44% of E. coli strains, while the thermonuclease (nuc) and methicillin resistance (mecA) genes were detected in 100% S. aureus and 39.6% of methicillin-resistant S. aureus (MRSA) strains, respectively. The S. aureus and E. coli strains were highly resistant to multiple antibiotics (e.g., ampicillin, amoxicillin-clavulanic acid and cephalothin). For identifying various foodborne pathogens, PMF has been recognized as a powerful and precise analytical method. In light of the increasing use of PMF to detect multidrug-resistant bacteria, this study emphasizes the need for improved ways of treating and preventing pathogens, as well as setting up monitoring systems to guarantee hygiene and safety in meat production. |
format | Online Article Text |
id | pubmed-9689540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96895402022-11-25 Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge Alzaben, Feras Fat’hi, Shawkat Elbehiry, Ayman Alsugair, Maha Marzouk, Eman Abalkhail, Adil Almuzaini, Abdulaziz M. Rawway, Mohammed Ibrahem, Mai Sindi, Wael Alshehri, Turki Hamada, Mohamed Diagnostics (Basel) Article Raw ground meat is known as a transmission vehicle for biological agents that may be harmful to human health. The objective of the present study was to assess microbiological quality of the ground meats. A total of 280 samples of local and imported chilled meats were randomly collected from retail shops in Buraydah City, Saudi Arabia. The meat samples were microbiologically analyzed using standard methods, peptide mass fingerprinting (PMF) technique, MicroScan Walkaway System (MicroScan) and qPCR System. The imported meat was more bacterially contaminated than local meat, with variable contamination degrees of Staphylococcus aureus (40.33%), Escherichia coli (36.13%), Hafnia alvei (7.56%), Pseudomonas spp. (6.72%), Salmonella spp. (5.88%) and Aeromonas spp. (3.36%). PMF verified all the isolated bacteria by 100%, compared to 75–95% achieved by MicroScan. The gene encoding flagellin (fliC) was recognized in 67.44% of E. coli strains, while the thermonuclease (nuc) and methicillin resistance (mecA) genes were detected in 100% S. aureus and 39.6% of methicillin-resistant S. aureus (MRSA) strains, respectively. The S. aureus and E. coli strains were highly resistant to multiple antibiotics (e.g., ampicillin, amoxicillin-clavulanic acid and cephalothin). For identifying various foodborne pathogens, PMF has been recognized as a powerful and precise analytical method. In light of the increasing use of PMF to detect multidrug-resistant bacteria, this study emphasizes the need for improved ways of treating and preventing pathogens, as well as setting up monitoring systems to guarantee hygiene and safety in meat production. MDPI 2022-10-31 /pmc/articles/PMC9689540/ /pubmed/36359489 http://dx.doi.org/10.3390/diagnostics12112645 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alzaben, Feras Fat’hi, Shawkat Elbehiry, Ayman Alsugair, Maha Marzouk, Eman Abalkhail, Adil Almuzaini, Abdulaziz M. Rawway, Mohammed Ibrahem, Mai Sindi, Wael Alshehri, Turki Hamada, Mohamed Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge |
title | Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge |
title_full | Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge |
title_fullStr | Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge |
title_full_unstemmed | Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge |
title_short | Laboratory Diagnostic Methods and Antibiotic Resistance Patterns of Staphylococcus aureus and Escherichia coli Strains: An Evolving Human Health Challenge |
title_sort | laboratory diagnostic methods and antibiotic resistance patterns of staphylococcus aureus and escherichia coli strains: an evolving human health challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689540/ https://www.ncbi.nlm.nih.gov/pubmed/36359489 http://dx.doi.org/10.3390/diagnostics12112645 |
work_keys_str_mv | AT alzabenferas laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT fathishawkat laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT elbehiryayman laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT alsugairmaha laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT marzoukeman laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT abalkhailadil laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT almuzainiabdulazizm laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT rawwaymohammed laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT ibrahemmai laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT sindiwael laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT alshehriturki laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge AT hamadamohamed laboratorydiagnosticmethodsandantibioticresistancepatternsofstaphylococcusaureusandescherichiacolistrainsanevolvinghumanhealthchallenge |