Cargando…

Evaluation of Rice Degree of Milling Based on Bayesian Optimization and Multi-Scale Residual Model

Traditional machine learning-based methods for the detection of rice degree of milling (DOM) that are not comprehensive in feature extraction and have low recognition rates fail to meet the demand for fast, non-destructive, and accurate detection. This paper presents a digital image processing techn...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Weidong, Li, Wanyu, Wang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689551/
https://www.ncbi.nlm.nih.gov/pubmed/36429313
http://dx.doi.org/10.3390/foods11223720
Descripción
Sumario:Traditional machine learning-based methods for the detection of rice degree of milling (DOM) that are not comprehensive in feature extraction and have low recognition rates fail to meet the demand for fast, non-destructive, and accurate detection. This paper presents a digital image processing technology combined with deep learning to implement the classification of DOM of rice. An improved multi-scale information fusion model of the InceptionResNet–Bayesian optimization algorithm (IRBOA) was constructed based on the Inception-v3 structure and residual network (ResNet) model. It enables to automatically extract more comprehensive features of rice and determine the DOM of rice. Additionally, the important hyperparameters in the model were tuned by the BOA to optimize the recognition rate of rice DOM. The results show the hyperparameters optimized using the BOA are those that would not be chosen in manual tuning. The classification precision of the IRBOA model reached 99.22%, 94.92%, and 96.55% for well-milled, reasonably well-milled, and substandard rice, respectively, with an average accuracy of no less than 96.90%. This model improved 7.41% over the traditional machine learning model and at least 1.35% over the fashionable CNN model with strong generalization performance. This method effectively completes rapid, non-destructive, and accurate intelligent detection of rice DOM, which can supply a reliable and accurate technical mean for rice processing enterprises to guide the rice processing process.