Cargando…
Evaluation of Rice Degree of Milling Based on Bayesian Optimization and Multi-Scale Residual Model
Traditional machine learning-based methods for the detection of rice degree of milling (DOM) that are not comprehensive in feature extraction and have low recognition rates fail to meet the demand for fast, non-destructive, and accurate detection. This paper presents a digital image processing techn...
Autores principales: | Chen, Weidong, Li, Wanyu, Wang, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689551/ https://www.ncbi.nlm.nih.gov/pubmed/36429313 http://dx.doi.org/10.3390/foods11223720 |
Ejemplares similares
-
Sensory Profile of Rice-Based Snack (Nuroongji) Prepared from Rice with Different Levels of Milling Degree
por: Kim, Mina K.
Publicado: (2020) -
The Effect of Degree of Milling on the Nutraceutical Content in Ecofriendly and Conventional Rice (Oryza sativa L.)
por: Kim, Seung-Hyun, et al.
Publicado: (2020) -
Structural changes of starch under different milling degrees affect the cooking and textural properties of rice
por: Zhang, Yu, et al.
Publicado: (2023) -
Effects of degree of milling on nutritional quality, functional characteristics and volatile compounds of brown rice tea
por: Zhou, Lei, et al.
Publicado: (2023) -
Ultrasound Treatment Enhanced Semidry-Milled Rice Flour Properties and Gluten-Free Rice Bread Quality
por: Qin, Wanyu, et al.
Publicado: (2022)