Cargando…
Communication Efficient Algorithms for Bounding and Approximating the Empirical Entropy in Distributed Systems
The empirical entropy is a key statistical measure of data frequency vectors, enabling one to estimate how diverse the data are. From the computational point of view, it is important to quickly compute, approximate, or bound the entropy. In a distributed system, the representative (“global”) frequen...
Autores principales: | Shahar, Amit, Alfassi, Yuval, Keren, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689552/ https://www.ncbi.nlm.nih.gov/pubmed/36359705 http://dx.doi.org/10.3390/e24111611 |
Ejemplares similares
-
The Non-Tightness of a Convex Relaxation to Rotation Recovery
por: Alfassi, Yuval, et al.
Publicado: (2021) -
On bounds in Poisson approximation for distributions of independent negative-binomial distributed random variables
por: Hung, Tran Loc, et al.
Publicado: (2016) -
An efficient 3-approximation algorithm for the Steiner tree problem with the minimum number of Steiner points and bounded edge length
por: Shin, Donghoon, et al.
Publicado: (2023) -
On closed-form tight bounds and approximations for the median of a gamma distribution
por: Lyon, Richard F.
Publicado: (2021) -
Depth-Bounded Approximations of Probability
por: Baldi, Paolo, et al.
Publicado: (2020)