Cargando…
Numerical Study on Effects of Wind Speed and Space Heights on Water Evaporating Performance of Water-Retained Bricks
Energy-saving roof renovation methods are effective ways to alleviate the urban heat island effect. In this paper, the authors propose three models of two-layer water-retained bricks, established the physical and mathematic models of the water-retained bricks, and then conducted a computational flui...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689579/ https://www.ncbi.nlm.nih.gov/pubmed/36359639 http://dx.doi.org/10.3390/e24111550 |
Sumario: | Energy-saving roof renovation methods are effective ways to alleviate the urban heat island effect. In this paper, the authors propose three models of two-layer water-retained bricks, established the physical and mathematic models of the water-retained bricks, and then conducted a computational fluid dynamics (CFD) simulation on the effect of wind speed and evaporation space height on the water-evaporating performance of water-retained bricks. The results show that: (1) for the water-retained bricks with no-hole lids, macroscopic evaporation does not happen under the static wind conditions; with the increase of wind speed, the evaporating boundary layer thickness decreases, the water vapor concentration gradient in the boundary layer and the mass diffusion flux increase; (2) for the water-retained bricks with strip-hole lids, under the static wind condition, the evaporating performance of the water-retained bricks with strip-hole lids is better than that of bricks with no-hole lids; with the increase of wind speed, the evaporation of bricks with strip-hole lids is less affected by inlet airflow velocity than that of bricks with no-hole lids; (3) as for both the water-retained bricks with no-hole lids and with strip-hole lids, for a given wind speed, both the water vapor concentration gradient and the mass diffusion flux decrease as the evaporation space increases. |
---|