Cargando…
MIFNN: Molecular Information Feature Extraction and Fusion Deep Neural Network for Screening Potential Drugs
Molecular property prediction is essential for drug screening and reducing the cost of drug discovery. Current approaches combined with deep learning for drug prediction have proven their viability. Based on the previous deep learning networks, we propose the Molecular Information Fusion Neural Netw...
Autores principales: | Wang, Jingjing, Li, Hongzhen, Zhao, Wenhan, Pang, Tinglin, Sun, Zengzhao, Zhang, Bo, Xu, Huaqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689591/ https://www.ncbi.nlm.nih.gov/pubmed/36421666 http://dx.doi.org/10.3390/cimb44110382 |
Ejemplares similares
-
Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron()
por: Lai, ZhiFei, et al.
Publicado: (2018) -
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
por: Hoang, Duy Tang, et al.
Publicado: (2021) -
Decision and feature level fusion of deep features extracted from public COVID-19 data-sets
por: Ilhan, Hamza Osman, et al.
Publicado: (2021) -
Maximum entropy methods for extracting the learned features of deep neural networks
por: Finnegan, Alex, et al.
Publicado: (2017) -
Extracting Wetland Type Information with a Deep Convolutional Neural Network
por: Guan, XianMing, et al.
Publicado: (2022)