Cargando…

Entropy Measurements for Leukocytes’ Surrounding Informativeness Evaluation for Acute Lymphoblastic Leukemia Classification

The study of leukemia classification using deep learning techniques has been conducted by multiple research teams worldwide. Although deep convolutional neural networks achieved high quality of sick vs. healthy patient discrimination, their inherent lack of human interpretability of the decision-mak...

Descripción completa

Detalles Bibliográficos
Autores principales: Pałczyński, Krzysztof, Ledziński, Damian, Andrysiak, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689677/
https://www.ncbi.nlm.nih.gov/pubmed/36359651
http://dx.doi.org/10.3390/e24111560
Descripción
Sumario:The study of leukemia classification using deep learning techniques has been conducted by multiple research teams worldwide. Although deep convolutional neural networks achieved high quality of sick vs. healthy patient discrimination, their inherent lack of human interpretability of the decision-making process hinders the adoption of deep learning techniques in medicine. Research involving deep learning proved that distinguishing between healthy and sick patients using microscopic images of lymphocytes is possible. However, it could not provide information on the intermediate steps in the diagnosis process. As a result, despite numerous examinations, it is still unclear whether the lymphocyte is the only object in the microscopic picture containing leukemia-related information or if the leukocyte’s surroundings also contain the desired information. In this work, entropy measures and machine learning models were applied to study the informativeness of both whole images and lymphocytes’ surroundings alone for Leukemia classification. This work aims to provide human-interpretable features marking the probability of sickness occurrence. The research stated that the hue distribution of images with lymphocytes obfuscated alone is informative enough to facilitate 93.0% accuracy in healthy vs. sick classification. The research was conducted on the ALL-IDB2 dataset.