Cargando…
Entropy Measurements for Leukocytes’ Surrounding Informativeness Evaluation for Acute Lymphoblastic Leukemia Classification
The study of leukemia classification using deep learning techniques has been conducted by multiple research teams worldwide. Although deep convolutional neural networks achieved high quality of sick vs. healthy patient discrimination, their inherent lack of human interpretability of the decision-mak...
Autores principales: | Pałczyński, Krzysztof, Ledziński, Damian, Andrysiak, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689677/ https://www.ncbi.nlm.nih.gov/pubmed/36359651 http://dx.doi.org/10.3390/e24111560 |
Ejemplares similares
-
IoT Application of Transfer Learning in Hybrid Artificial Intelligence Systems for Acute Lymphoblastic Leukemia Classification
por: Pałczyński, Krzysztof, et al.
Publicado: (2021) -
The impact of the number of high temporal resolution water meters on the determinism of water consumption in a district metered area
por: Stańczyk, Justyna, et al.
Publicado: (2023) -
ECG Signal Classification Using Deep Learning Techniques Based on the PTB-XL Dataset
por: Śmigiel, Sandra, et al.
Publicado: (2021) -
Deep Learning Techniques in the Classification of ECG Signals Using R-Peak Detection Based on the PTB-XL Dataset
por: Śmigiel, Sandra, et al.
Publicado: (2021) -
Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset
por: Pałczyński, Krzysztof, et al.
Publicado: (2022)