Cargando…
Partial Verification Bias Correction Using Inverse Probability Bootstrap Sampling for Binary Diagnostic Tests
In medical care, it is important to evaluate any new diagnostic test in the form of diagnostic accuracy studies. These new tests are compared to gold standard tests, where the performance of binary diagnostic tests is usually measured by sensitivity (Sn) and specificity (Sp). However, these accuracy...
Autores principales: | Arifin, Wan Nor, Yusof, Umi Kalsom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689704/ https://www.ncbi.nlm.nih.gov/pubmed/36428900 http://dx.doi.org/10.3390/diagnostics12112839 |
Ejemplares similares
-
Using Inverse Probability Bootstrap Sampling to Eliminate Sample Induced Bias in Model Based Analysis of Unequal Probability Samples
por: Nahorniak, Matthew, et al.
Publicado: (2015) -
Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction
por: Nasser, Maged, et al.
Publicado: (2023) -
Recent Techniques in Determining the Effects of Climate Change on Depressive Patients: A Systematic Review
por: Ab Kader, Nur Izzati, et al.
Publicado: (2022) -
Correcting the Bias Correction for the Bootstrap Confidence Interval in Mediation Analysis
por: Tibbe, Tristan D., et al.
Publicado: (2022) -
Bootstrap Bias Corrected Cross Validation Applied to Super Learning
por: Mnich, Krzysztof, et al.
Publicado: (2020)