Cargando…
Sparse Regularized Optimal Transport with Deformed q-Entropy
Optimal transport is a mathematical tool that has been a widely used to measure the distance between two probability distributions. To mitigate the cubic computational complexity of the vanilla formulation of the optimal transport problem, regularized optimal transport has received attention in rece...
Autores principales: | Bao, Han, Sakaue, Shinsaku |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689736/ https://www.ncbi.nlm.nih.gov/pubmed/36359723 http://dx.doi.org/10.3390/e24111634 |
Ejemplares similares
-
Entropy-Regularized Optimal Transport on Multivariate Normal and q-normal Distributions
por: Tong, Qijun, et al.
Publicado: (2021) -
On Entropy Regularized Path Integral Control for Trajectory Optimization
por: Lefebvre, Tom, et al.
Publicado: (2020) -
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016) -
Regularity of optimal transport maps and applications
por: Philippis, Guido
Publicado: (2013) -
Entropy as an Objective Function of Optimization Multimodal Transportations
por: Bazaluk, Oleg, et al.
Publicado: (2021)