Cargando…
User Identity Linkage across Social Networks with the Enhancement of Knowledge Graph and Time Decay Function
Users participate in multiple social networks for different services. User identity linkage aims to predict whether users across different social networks refer to the same person, and it has received significant attention for downstream tasks such as recommendation and user profiling. Recently, res...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689741/ https://www.ncbi.nlm.nih.gov/pubmed/36359693 http://dx.doi.org/10.3390/e24111603 |
Sumario: | Users participate in multiple social networks for different services. User identity linkage aims to predict whether users across different social networks refer to the same person, and it has received significant attention for downstream tasks such as recommendation and user profiling. Recently, researchers proposed measuring the relevance of user-generated content to predict identity linkages of users. However, there are two challenging problems with existing content-based methods: first, barely considering the word similarities of texts is insufficient where the semantical correlations of named entities in the texts are ignored; second, most methods use time discretization technology, where the texts are divided into different time slices, resulting in failure of relevance modeling. To address these issues, we propose a user identity linkage model with the enhancement of a knowledge graph and continuous time decay functions that are designed for mitigating the influence of time discretization. Apart from modeling the correlations of the words, we extract the named entities in the texts and link them into the knowledge graph to capture the correlations of named entities. The semantics of texts are enhanced through the external knowledge of the named entities in the knowledge graph, and the similarity discrimination of the texts is also improved. Furthermore, we propose continuous time decay functions to capture the closeness of the posting time of texts instead of time discretization to avoid the matching error of texts. We conduct experiments on two real public datasets, and the experimental results show that the proposed method outperforms state-of-the-art methods. |
---|