Cargando…
Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network
Hypertension is a severe public health issue worldwide that significantly increases the risk of cardiac vascular disease, stroke, brain hemorrhage, and renal dysfunction. Early screening of blood pressure (BP) levels is essential to prevent the dangerous complication associated with hypertension as...
Autores principales: | Fuadah, Yunendah Nur, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689744/ https://www.ncbi.nlm.nih.gov/pubmed/36428946 http://dx.doi.org/10.3390/diagnostics12112886 |
Ejemplares similares
-
Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals
por: Malayeri, Ali Bahari, et al.
Publicado: (2022) -
An Optimal Approach for Heart Sound Classification Using Grid Search in Hyperparameter Optimization of Machine Learning
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM
por: Mahardika T, Nurul Qashri, et al.
Publicado: (2023) -
Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure
por: Finnegan, Eoin, et al.
Publicado: (2023)