Cargando…
A Hybrid Preprocessor DE-ABC for Efficient Skin-Lesion Segmentation with Improved Contrast
Rapid advancements and the escalating necessity of autonomous algorithms in medical imaging require efficient models to accomplish tasks such as segmentation and classification. However, there exists a significant dependency on the image quality of datasets when using these models. Appreciable impro...
Autores principales: | Malik, Shairyar, Akram, Tallha, Ashraf, Imran, Rafiullah, Muhammad, Ullah, Mukhtar, Tanveer, Jawad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689812/ https://www.ncbi.nlm.nih.gov/pubmed/36359469 http://dx.doi.org/10.3390/diagnostics12112625 |
Ejemplares similares
-
An Improved Skin Lesion Boundary Estimation for Enhanced-Intensity Images Using Hybrid Metaheuristics
por: Malik, Shairyar, et al.
Publicado: (2023) -
Precision in Dermatology: Developing an Optimal Feature Selection Framework for Skin Lesion Classification
por: Akram, Tallha, et al.
Publicado: (2023) -
Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization
por: Khan, Muhammad Attique, et al.
Publicado: (2021) -
An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification
por: Khan, M. Attique, et al.
Publicado: (2018) -
The HERMES preprocessor for FEM2D
por: Lucas, J
Publicado: (1999)