Cargando…
Colorectal Cancer Survival Prediction Using Deep Distribution Based Multiple-Instance Learning
Most deep-learning algorithms that use Hematoxylin- and Eosin-stained whole slide images (WSIs) to predict cancer survival incorporate image patches either with the highest scores or a combination of both the highest and lowest scores. In this study, we hypothesize that incorporating wholistic patch...
Autores principales: | Li, Xingyu, Jonnagaddala, Jitendra, Cen, Min, Zhang, Hong, Xu, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689861/ https://www.ncbi.nlm.nih.gov/pubmed/36421523 http://dx.doi.org/10.3390/e24111669 |
Ejemplares similares
-
Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images
por: Sandarenu, Piumi, et al.
Publicado: (2022) -
Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E‐stained images: achieving state‐of‐the‐art predictive performance with fewer data using Swin Transformer
por: Guo, Bangwei, et al.
Publicado: (2023) -
Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity
por: Liu, Zhihan, et al.
Publicado: (2023) -
Classifying and segmenting microscopy images with deep multiple instance learning
por: Kraus, Oren Z., et al.
Publicado: (2016) -
Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning
por: Höhn, Julia, et al.
Publicado: (2023)