Cargando…
ResNet Model Automatically Extracts and Identifies FT-NIR Features for Geographical Traceability of Polygonatum kingianum
Medicinal plants have incredibly high economic value, and a practical evaluation of their quality is the key to promoting industry development. The deep learning model based on residual convolutional neural network (ResNet) has the advantage of automatic extraction and the recognition of Fourier tra...
Autores principales: | Xu, Yulin, Yang, Weize, Wu, Xuewei, Wang, Yuanzhong, Zhang, Jinyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689878/ https://www.ncbi.nlm.nih.gov/pubmed/36429160 http://dx.doi.org/10.3390/foods11223568 |
Ejemplares similares
-
Untargeted GC-MS and FT-NIR study of the effect of 14 processing methods on the volatile components of Polygonatum kingianum
por: Xu, Yulin, et al.
Publicado: (2023) -
ResNet and MaxEnt modeling for quality assessment of Wolfiporia cocos based on FT-NIR fingerprints
por: Zhang, YanYing, et al.
Publicado: (2022) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
Transcriptomic responses to drought stress in Polygonatum kingianum tuber
por: Qian, Huali, et al.
Publicado: (2021) -
Automatic Building Extraction on Satellite Images Using Unet and ResNet50
por: Alsabhan, Waleed, et al.
Publicado: (2022)