Cargando…
Resting-State EEG in Alpha Rhythm May Be Indicative of the Performance of Motor Imagery-Based Brain–Computer Interface
Motor imagery-based brain–computer interfaces (MI-BCIs) have great application prospects in motor enhancement and rehabilitation. However, the capacity to control a MI-BCI varies among persons. Predicting the MI ability of a user remains challenging in BCI studies. We first calculated the relative p...
Autores principales: | Wang, Kun, Tian, Feifan, Xu, Minpeng, Zhang, Shanshan, Xu, Lichao, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689965/ https://www.ncbi.nlm.nih.gov/pubmed/36359646 http://dx.doi.org/10.3390/e24111556 |
Ejemplares similares
-
Optimization of Task Allocation for Collaborative Brain–Computer Interface Based on Motor Imagery
por: Gu, Bin, et al.
Publicado: (2021) -
Transformed common spatial pattern for motor imagery-based brain-computer interfaces
por: Ma, Zhen, et al.
Publicado: (2023) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface
por: Triana-Guzman, Nayid, et al.
Publicado: (2022) -
Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance
por: Kang, Jae-Hwan, et al.
Publicado: (2021)