Cargando…
A Novel Epilepsy Detection Method Based on Feature Extraction by Deep Autoencoder on EEG Signal
Electroencephalogram (EEG) signals are the gold standard tool for detecting epileptic seizures. Long-term EEG signal monitoring is a promising method to realize real-time and automatic epilepsy detection with the assistance of computer-aided techniques and the Internet of Medical Things (IoMT) devic...
Autores principales: | Huang, Xiaojie, Sun, Xiangtao, Zhang, Lijun, Zhu, Tong, Yang, Hao, Xiong, Qingsong, Feng, Lijie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690147/ https://www.ncbi.nlm.nih.gov/pubmed/36429845 http://dx.doi.org/10.3390/ijerph192215110 |
Ejemplares similares
-
An Adaptive EEG Feature Extraction Method Based on Stacked Denoising Autoencoder for Mental Fatigue Connectivity
por: Yu, Zhongliang, et al.
Publicado: (2021) -
A Shallow Autoencoder Framework for Epileptic Seizure Detection in EEG Signals
por: Khan, Gul Hameed, et al.
Publicado: (2023) -
Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
por: Tang, Ta-Wei, et al.
Publicado: (2022) -
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
por: Li, Qi, et al.
Publicado: (2022) -
Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer
por: Liu, Qian, et al.
Publicado: (2019)