Cargando…
Using Random Effect Models to Produce Robust Estimates of Death Rates in COVID-19 Data
Tracking the progress of an infectious disease is critical during a pandemic. However, the incubation period, diagnosis, and treatment most often cause uncertainties in the reporting of both cases and deaths, leading in turn to unreliable death rates. Moreover, even if the reported counts were accur...
Autores principales: | Almohaimeed, Amani, Einbeck, Jochen, Qarmalah, Najla, Alkhidhr, Hanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690214/ https://www.ncbi.nlm.nih.gov/pubmed/36429678 http://dx.doi.org/10.3390/ijerph192214960 |
Ejemplares similares
-
A Sequential Cross-Sectional Analysis Producing Robust Weekly COVID-19 Rates for South East Asian Countries
por: Almohaimeed, Amani, et al.
Publicado: (2023) -
Some new findings on the survival Rényi entropy and application of COVID-19 data
por: Mohamed, Mohamed S., et al.
Publicado: (2021) -
A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay
por: Einbeck, Jochen, et al.
Publicado: (2018) -
Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates
por: Fottrell, Edward, et al.
Publicado: (2008) -
Biostatnet workshop on Biomedical (Big) Data & DoReMi LD-RadStats: Workshop for statisticians interested in contributing to EU low dose radiation research
por: Ainsbury, Elizabeth, et al.
Publicado: (2017)