Cargando…
Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots
Existing approaches to predicting RNA secondary structures depend on how the secondary structure is decomposed into substructures, that is, the architecture, to define their parameter space. However, architecture dependency has not been sufficiently investigated, especially for pseudoknotted seconda...
Autores principales: | Akiyama, Manato, Sakakibara, Yasubumi, Sato, Kengo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690657/ https://www.ncbi.nlm.nih.gov/pubmed/36421829 http://dx.doi.org/10.3390/genes13112155 |
Ejemplares similares
-
RNA secondary structure prediction using deep learning with thermodynamic integration
por: Sato, Kengo, et al.
Publicado: (2021) -
Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning
por: Akiyama, Manato, et al.
Publicado: (2022) -
Prediction of RNA secondary structure including pseudoknots for long sequences
por: Sato, Kengo, et al.
Publicado: (2021) -
An extended genovo metagenomic assembler by incorporating paired-end information
por: , Afiahayati, et al.
Publicado: (2013) -
Directed acyclic graph kernels for structural RNA analysis
por: Sato, Kengo, et al.
Publicado: (2008)