Cargando…
A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations
Personalized medicine requires an understanding of treatment effect heterogeneity. Evolving toward causal evidence for scenarios not studied in randomized trials necessitates a methodology using real-world evidence. Herein, we demonstrate a methodology that generates causal effects, assesses the het...
Autores principales: | Hu, Liangyuan, Ji, Jiayi, Liu, Hao, Ennis, Ronald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690785/ https://www.ncbi.nlm.nih.gov/pubmed/36429621 http://dx.doi.org/10.3390/ijerph192214903 |
Ejemplares similares
-
A flexible approach for causal inference with multiple treatments and clustered survival outcomes
por: Hu, Liangyuan, et al.
Publicado: (2022) -
Estimation of causal effects of multiple treatments in observational studies with a binary outcome
por: Hu, Liangyuan, et al.
Publicado: (2020) -
A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data
por: Lin, Jung-Yi Joyce, et al.
Publicado: (2022) -
Estimating the causal effects of multiple intermittent treatments with application to COVID-19
por: Hu, Liangyuan, et al.
Publicado: (2023) -
Assessing causal treatment effect estimation when using large observational datasets
por: John, E. R., et al.
Publicado: (2019)