Cargando…
Word2vec Word Embedding-Based Artificial Intelligence Model in the Triage of Patients with Suspected Diagnosis of Major Ischemic Stroke: A Feasibility Study
Background: The possible benefits of using semantic language models in the early diagnosis of major ischemic stroke (MIS) based on artificial intelligence (AI) are still underestimated. The present study strives to assay the feasibility of the word2vec word embedding-based model in decreasing the ri...
Autores principales: | Desai, Antonio, Zumbo, Aurora, Giordano, Mauro, Morandini, Pierandrea, Laino, Maria Elena, Azzolini, Elena, Fabbri, Andrea, Marcheselli, Simona, Giotta Lucifero, Alice, Luzzi, Sabino, Voza, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691077/ https://www.ncbi.nlm.nih.gov/pubmed/36430014 http://dx.doi.org/10.3390/ijerph192215295 |
Ejemplares similares
-
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
subs2vec: Word embeddings from subtitles in 55 languages
por: van Paridon, Jeroen, et al.
Publicado: (2020) -
The Spectral Underpinning of word2vec
por: Jaffe, Ariel, et al.
Publicado: (2020) -
Improving the Polarity of Text through word2vec Embedding for Primary Classical Arabic Sentiment Analysis
por: Aoumeur, Nour Elhouda, et al.
Publicado: (2023) -
Specialists, Scientists, and Sentiments: Word2Vec and Doc2Vec in Analysis of Scientific and Medical Texts
por: Chen, Qufei, et al.
Publicado: (2021)