Cargando…

Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings

Adiponectin (ADIPOQ) as both a regulator of metabolic homeostasis and a protein involved in immune response might be of particular interest to contemporary laboratory medicine, especially in terms of minimally invasive diagnostics. The diverse roles of ADIPOQ with regard to the immune and metabolic...

Descripción completa

Detalles Bibliográficos
Autores principales: Mihajlović, Marija, Ninić, Ana, Ostojić, Marija, Sopić, Miron, Stefanović, Aleksandra, Vekić, Jelena, Antonić, Tamara, Zeljković, Dejan, Trifunović, Bratislav, Spasojević-Kalimanovska, Vesna, Bogavac Stanojević, Nataša, Jančić, Ivan, Zeljković, Aleksandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691131/
https://www.ncbi.nlm.nih.gov/pubmed/36429712
http://dx.doi.org/10.3390/ijerph192214995
Descripción
Sumario:Adiponectin (ADIPOQ) as both a regulator of metabolic homeostasis and a protein involved in immune response might be of particular interest to contemporary laboratory medicine, especially in terms of minimally invasive diagnostics. The diverse roles of ADIPOQ with regard to the immune and metabolic aspects of colorectal carcinogenesis have been proposed. However, the expression of its receptors ADIPOR1 and ADIPOR2 is scarcely explored in peripheral blood mononuclear cells (PBMCs). Moreover, ADIPORs’ relationships with the immune response mediator TNF-α have not been previously investigated in the PBMCs of CRC patients. This study used both in silico and observational case–control analyses with the aim of exploring the association of ADIPOR gene expression and ADIPOQ single nucleotide polymorphisms (SNPs) with the inflammatory marker TNF-α and lipid status parameters in patients with CRC. Publicly available transcriptomic datasets (GSE47756, GSE44076) obtained from analyses of monocytes and CRC tissue samples were employed for the in silico evaluation of ADIPORs’ specific genetic traits. GSE47756 and GSE44076 datasets were processed with GSEA software to provide a genetic fingertip of different signaling pathways associated with ADIPORs’ mRNA levels. The case–control aspect of the study included the PBMC samples of 73 patients diagnosed with CRC and 80 healthy volunteers. The PCR method was carried out for the PBMC gene expression analysis (ADIPOR1, ADIPOR2, TNF-α mRNA levels) and for the subjects’ genotyping (ADIPOQ rs266729, ADIPOR1 rs7539542). GSEA showed significant associations of ADIPOR mRNA expression with gene sets related to metabolic and immune homeostasis in both datasets. The case–control study revealed the association of ADIPOR1 rs7539542 with reduced lipid status parameters in CRC. In addition, PBMC ADIPOR1 mRNA levels decreased in CRC (p < 0.001), whereas ADIPOR2 mRNA did not differ between the groups (p = 0.442). A reduction in PBMC TNF-α mRNA levels was noted in CRC (p < 0.05). Our results indicate that ADIPOR1 and ADIPOR2 play a significant role in the alteration of both metabolic and immune homeostasis during the progression of CRC. For the first time, ADIPOR1 is shown to be a specific receptor for mediating ADIPOQ’s effects in the PBMCs of CRC patients.