Cargando…
Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes
Objective: This case study aimed to explore changes to sprint force-velocity characteristics across a periodized training year (45 weeks) and the influence on sprint kinematics and performance in national level 100-meter athletes. Force-velocity characteristics have been shown to differentiate betwe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691245/ https://www.ncbi.nlm.nih.gov/pubmed/36430123 http://dx.doi.org/10.3390/ijerph192215404 |
_version_ | 1784836997165088768 |
---|---|
author | Hicks, Dylan Shaun Drummond, Claire Williams, Kym J. van den Tillaar, Roland |
author_facet | Hicks, Dylan Shaun Drummond, Claire Williams, Kym J. van den Tillaar, Roland |
author_sort | Hicks, Dylan Shaun |
collection | PubMed |
description | Objective: This case study aimed to explore changes to sprint force-velocity characteristics across a periodized training year (45 weeks) and the influence on sprint kinematics and performance in national level 100-meter athletes. Force-velocity characteristics have been shown to differentiate between performance levels in sprint athletes, yet limited information exists describing how characteristics change across a season and impact sprint performance, therefore warranting further research. Methods: Two male national level 100-meter athletes (Athlete 1: 22 years, 1.83 m, 81.1 kg, 100 m time: 10.47 s; Athlete 2: 19 years, 1.82 cm, 75.3 kg, 100 m time: 10.81 s) completed 12 and 11 force-velocity assessments, respectively, using electronic timing gates. Sprint mechanical characteristics were derived from 30-meter maximal sprint efforts using split times (i.e., 0–10 m, 0–20 m, 0–30 m) whereas step kinematics were established from 100-meter competition performance using video analysis. Results: Between the preparation (PREP) and competition (COMP) phase, Athlete 1 showed significantly large within-athlete effects for relative maximal power (P(MAX)), theoretical maximal velocity (v(0)), maximum ratio of force (RF(MAX)), maximal velocity (V(MAX)), and split time from 0 to 20 m and 0 to 30 m (−1.70 ≤ ES ≥ 1.92, p ≤ 0.05). Athlete 2 reported significant differences with large effects for relative maximal force (F(0)) and RF(MAX) only (ES: ≤ −1.46, p ≤ 0.04). In the PREP phase, both athletes reported almost perfect correlations between F(0), P(MAX) and 0–20 m (r = −0.99, p ≤ 0.01), however in the COMP phase, the relationships between mechanical characteristics and split times were more individual. Competition performance in the 100-meter sprint (10.64 ± 0.24 s) showed a greater reliance on step length (r ≥ −0.72, p ≤ 0.001) than step frequency to achieve faster performances. The minimal detectable change (%) across mechanical variables ranged from 1.3 to 10.0% while spatio-temporal variables were much lower, from 0.94 to 1.48%, with Athlete 1 showing a higher ‘true change’ in performance across the season compared to Athlete 2. Conclusions: The estimated sprint force-velocity data collected across a training year may provide insight to practitioners about the underpinning mechanical characteristics which affect sprint performance during specific phases of training, plus how a periodized training design may enhance sprint force-velocity characteristics and performance outcomes. |
format | Online Article Text |
id | pubmed-9691245 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96912452022-11-25 Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes Hicks, Dylan Shaun Drummond, Claire Williams, Kym J. van den Tillaar, Roland Int J Environ Res Public Health Case Report Objective: This case study aimed to explore changes to sprint force-velocity characteristics across a periodized training year (45 weeks) and the influence on sprint kinematics and performance in national level 100-meter athletes. Force-velocity characteristics have been shown to differentiate between performance levels in sprint athletes, yet limited information exists describing how characteristics change across a season and impact sprint performance, therefore warranting further research. Methods: Two male national level 100-meter athletes (Athlete 1: 22 years, 1.83 m, 81.1 kg, 100 m time: 10.47 s; Athlete 2: 19 years, 1.82 cm, 75.3 kg, 100 m time: 10.81 s) completed 12 and 11 force-velocity assessments, respectively, using electronic timing gates. Sprint mechanical characteristics were derived from 30-meter maximal sprint efforts using split times (i.e., 0–10 m, 0–20 m, 0–30 m) whereas step kinematics were established from 100-meter competition performance using video analysis. Results: Between the preparation (PREP) and competition (COMP) phase, Athlete 1 showed significantly large within-athlete effects for relative maximal power (P(MAX)), theoretical maximal velocity (v(0)), maximum ratio of force (RF(MAX)), maximal velocity (V(MAX)), and split time from 0 to 20 m and 0 to 30 m (−1.70 ≤ ES ≥ 1.92, p ≤ 0.05). Athlete 2 reported significant differences with large effects for relative maximal force (F(0)) and RF(MAX) only (ES: ≤ −1.46, p ≤ 0.04). In the PREP phase, both athletes reported almost perfect correlations between F(0), P(MAX) and 0–20 m (r = −0.99, p ≤ 0.01), however in the COMP phase, the relationships between mechanical characteristics and split times were more individual. Competition performance in the 100-meter sprint (10.64 ± 0.24 s) showed a greater reliance on step length (r ≥ −0.72, p ≤ 0.001) than step frequency to achieve faster performances. The minimal detectable change (%) across mechanical variables ranged from 1.3 to 10.0% while spatio-temporal variables were much lower, from 0.94 to 1.48%, with Athlete 1 showing a higher ‘true change’ in performance across the season compared to Athlete 2. Conclusions: The estimated sprint force-velocity data collected across a training year may provide insight to practitioners about the underpinning mechanical characteristics which affect sprint performance during specific phases of training, plus how a periodized training design may enhance sprint force-velocity characteristics and performance outcomes. MDPI 2022-11-21 /pmc/articles/PMC9691245/ /pubmed/36430123 http://dx.doi.org/10.3390/ijerph192215404 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Case Report Hicks, Dylan Shaun Drummond, Claire Williams, Kym J. van den Tillaar, Roland Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes |
title | Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes |
title_full | Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes |
title_fullStr | Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes |
title_full_unstemmed | Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes |
title_short | Exploratory Analysis of Sprint Force-Velocity Characteristics, Kinematics and Performance across a Periodized Training Year: A Case Study of Two National Level Sprint Athletes |
title_sort | exploratory analysis of sprint force-velocity characteristics, kinematics and performance across a periodized training year: a case study of two national level sprint athletes |
topic | Case Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691245/ https://www.ncbi.nlm.nih.gov/pubmed/36430123 http://dx.doi.org/10.3390/ijerph192215404 |
work_keys_str_mv | AT hicksdylanshaun exploratoryanalysisofsprintforcevelocitycharacteristicskinematicsandperformanceacrossaperiodizedtrainingyearacasestudyoftwonationallevelsprintathletes AT drummondclaire exploratoryanalysisofsprintforcevelocitycharacteristicskinematicsandperformanceacrossaperiodizedtrainingyearacasestudyoftwonationallevelsprintathletes AT williamskymj exploratoryanalysisofsprintforcevelocitycharacteristicskinematicsandperformanceacrossaperiodizedtrainingyearacasestudyoftwonationallevelsprintathletes AT vandentillaarroland exploratoryanalysisofsprintforcevelocitycharacteristicskinematicsandperformanceacrossaperiodizedtrainingyearacasestudyoftwonationallevelsprintathletes |