Cargando…
Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition
Image sentiment recognition has attracted considerable attention from academia and industry due to the increasing tendency of expressing opinions via images and videos online. Previous studies focus on multilevel representation from global and local views to improve recognition performance. However,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691302/ https://www.ncbi.nlm.nih.gov/pubmed/36438686 http://dx.doi.org/10.1155/2022/9772714 |
_version_ | 1784837009842372608 |
---|---|
author | Yang, Shanliang Xing, Linlin Chang, Zheng Li, Yongming |
author_facet | Yang, Shanliang Xing, Linlin Chang, Zheng Li, Yongming |
author_sort | Yang, Shanliang |
collection | PubMed |
description | Image sentiment recognition has attracted considerable attention from academia and industry due to the increasing tendency of expressing opinions via images and videos online. Previous studies focus on multilevel representation from global and local views to improve recognition performance. However, it is insufficient to research the importance and relationship of visual regions for image sentiment recognition. This paper proposes an attention-based sentiment region importance and relationship (ASRIR) analysis method, including important attention and relation attention for image sentiment recognition. First, we extract spatial region features using a multilevel pyramid network from the image. Second, we design important attention to exploring the sentiment semantic-related regions and relation attention to investigating the relationship between regions. In order to release the excessive concentration of attention, we employ a unimodal function as the objective function for regularization. Finally, the region features weighted by the attention mechanism are fused and input into a fully connected layer for classification. Extensive experiments on various commonly used image sentiment datasets demonstrate that our proposed method outperforms the state-of-the-art approaches. |
format | Online Article Text |
id | pubmed-9691302 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-96913022022-11-25 Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition Yang, Shanliang Xing, Linlin Chang, Zheng Li, Yongming Comput Intell Neurosci Research Article Image sentiment recognition has attracted considerable attention from academia and industry due to the increasing tendency of expressing opinions via images and videos online. Previous studies focus on multilevel representation from global and local views to improve recognition performance. However, it is insufficient to research the importance and relationship of visual regions for image sentiment recognition. This paper proposes an attention-based sentiment region importance and relationship (ASRIR) analysis method, including important attention and relation attention for image sentiment recognition. First, we extract spatial region features using a multilevel pyramid network from the image. Second, we design important attention to exploring the sentiment semantic-related regions and relation attention to investigating the relationship between regions. In order to release the excessive concentration of attention, we employ a unimodal function as the objective function for regularization. Finally, the region features weighted by the attention mechanism are fused and input into a fully connected layer for classification. Extensive experiments on various commonly used image sentiment datasets demonstrate that our proposed method outperforms the state-of-the-art approaches. Hindawi 2022-11-17 /pmc/articles/PMC9691302/ /pubmed/36438686 http://dx.doi.org/10.1155/2022/9772714 Text en Copyright © 2022 Shanliang Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Shanliang Xing, Linlin Chang, Zheng Li, Yongming Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition |
title | Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition |
title_full | Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition |
title_fullStr | Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition |
title_full_unstemmed | Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition |
title_short | Attention-Based Sentiment Region Importance and Relationship Analysis for Image Sentiment Recognition |
title_sort | attention-based sentiment region importance and relationship analysis for image sentiment recognition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691302/ https://www.ncbi.nlm.nih.gov/pubmed/36438686 http://dx.doi.org/10.1155/2022/9772714 |
work_keys_str_mv | AT yangshanliang attentionbasedsentimentregionimportanceandrelationshipanalysisforimagesentimentrecognition AT xinglinlin attentionbasedsentimentregionimportanceandrelationshipanalysisforimagesentimentrecognition AT changzheng attentionbasedsentimentregionimportanceandrelationshipanalysisforimagesentimentrecognition AT liyongming attentionbasedsentimentregionimportanceandrelationshipanalysisforimagesentimentrecognition |