Cargando…

Effect of acid hydrolysis on the structural and antioxidant characteristics of β-glucan extracted from Qingke (Tibetan hulless barley)

In this study, we explored the effect of acid hydrolysis on the molecular, structural, rheological, thermal, and antioxidant characteristics of Qingke β-glucan. The acid hydrolysis reduced the molecular weights of β-glucans from 510 to 155 KDa. The results of the structural analysis by nuclear magne...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Lan, Lin, Shuwei, Lin, Jingying, Wu, Jia, Chen, Huibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691401/
https://www.ncbi.nlm.nih.gov/pubmed/36438764
http://dx.doi.org/10.3389/fnut.2022.1052901
Descripción
Sumario:In this study, we explored the effect of acid hydrolysis on the molecular, structural, rheological, thermal, and antioxidant characteristics of Qingke β-glucan. The acid hydrolysis reduced the molecular weights of β-glucans from 510 to 155 KDa. The results of the structural analysis by nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction, and fourier transforms infrared (FTIR) spectroscopy indicated that acid hydrolysis did not change the primary functional groups of β-glucans. The rheological behavior of β-glucan without and with acid hydrolysis can be described as pseudoplastic and Newtonian, respectively. The DSC curves of the β-glucans with high molecular weights showed the highest transition temperature. The 2, 2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity and the reducing power of soluble β-glucans in Qingke showed a dose-dependent pattern. Meanwhile, the antioxidant activities of Qingke β-glucan of different molecular weights were similar. This study demostrated that the acid hydrolysis almost have no effect on antioxidant activity of Qingke β-glucans.