Cargando…
Automatic segmentation of nasopharyngeal carcinoma on CT images using efficient UNet‐2.5D ensemble with semi‐supervised pretext task pretraining
Nasopharyngeal carcinoma (NPC) is primarily treated with radiation therapy. Accurate delineation of target volumes and organs at risk is important. However, manual delineation is time-consuming, variable, and subjective depending on the experience of the radiation oncologist. This work explores the...
Autores principales: | Domoguen, Jansen Keith L., Manuel, Jen-Jen A., Cañal, Johanna Patricia A., Naval, Prospero C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691832/ https://www.ncbi.nlm.nih.gov/pubmed/36439414 http://dx.doi.org/10.3389/fonc.2022.980312 |
Ejemplares similares
-
Survey on Self-Supervised Learning: Auxiliary Pretext Tasks and Contrastive Learning Methods in Imaging
por: Albelwi, Saleh
Publicado: (2022) -
The Pretext
Publicado: (1896) -
SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
por: Ullah, Zahid, et al.
Publicado: (2023) -
Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging
por: Shi, Chenwei, et al.
Publicado: (2023) -
Text, context, pretext : critical issues in discourse analysis /
por: Widdowson, H. G. 1935- (Henry George)
Publicado: (2004)