Cargando…
A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma
Aggressive large B-cell lymphoma (LBCL) has variable outcomes. Current prognostic tools use factors for risk stratification that inadequately identify patients at high risk of refractory disease or relapse before initial treatment. A model associating 2 risk factors, total metabolic tumor volume (TM...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society of Hematology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691911/ https://www.ncbi.nlm.nih.gov/pubmed/36044385 http://dx.doi.org/10.1182/bloodadvances.2021006923 |
_version_ | 1784837137023107072 |
---|---|
author | Thieblemont, Catherine Chartier, Loic Dührsen, Ulrich Vitolo, Umberto Barrington, Sally F. Zaucha, Jan M. Vercellino, Laetitia Gomes Silva, Maria Patrocinio-Carvalho, Ines Decazes, Pierre Viailly, Pierre-Julien Tilly, Herve Berriolo-Riedinger, Alina Casasnovas, Oliver Hüttmann, Andreas Ilyas, Hajira Mikhaeel, N. George Dunn, Joel Cottereau, Anne-Ségolène Schmitz, Christine Kostakoglu, Lale Paulson, Joseph N. Nielsen, Tina Meignan, Michael |
author_facet | Thieblemont, Catherine Chartier, Loic Dührsen, Ulrich Vitolo, Umberto Barrington, Sally F. Zaucha, Jan M. Vercellino, Laetitia Gomes Silva, Maria Patrocinio-Carvalho, Ines Decazes, Pierre Viailly, Pierre-Julien Tilly, Herve Berriolo-Riedinger, Alina Casasnovas, Oliver Hüttmann, Andreas Ilyas, Hajira Mikhaeel, N. George Dunn, Joel Cottereau, Anne-Ségolène Schmitz, Christine Kostakoglu, Lale Paulson, Joseph N. Nielsen, Tina Meignan, Michael |
author_sort | Thieblemont, Catherine |
collection | PubMed |
description | Aggressive large B-cell lymphoma (LBCL) has variable outcomes. Current prognostic tools use factors for risk stratification that inadequately identify patients at high risk of refractory disease or relapse before initial treatment. A model associating 2 risk factors, total metabolic tumor volume (TMTV) >220 cm(3) (determined by fluorine-18 fluorodeoxyglucose positron emission tomography coupled with computed tomography) and performance status (PS) ≥2, identified as prognostic in 301 older patients in the REMARC trial (#NCT01122472), was validated in 2174 patients of all ages treated in 2 clinical trials, PETAL (Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas; N = 510) and GOYA (N = 1315), and in real-world clinics (N = 349) across Europe and the United States. Three risk categories, low (no factors), intermediate (1 risk factor), and high (2 risk factors), significantly discriminated outcome in most of the series. Patients with 2 risk factors had worse outcomes than patients with no risk factors in the PETAL, GOYA, and real-world series. Patients with intermediate risk also had significantly worse outcomes than patients with no risk factors. The TMTV/Eastern Cooperative Oncology Group-PS combination outperformed the International Prognostic Index with a positive C-index for progression-free survival and overall survival in most series. The combination of high TMTV > 220 cm(3) and ECOG-PS ≥ 2 is a simple clinical model to identify aggressive LBCL risk categories before treatment. This combination addresses the unmet need to better predict before treatment initiation for aggressive LBCL the patients likely to benefit the most or not at all from therapy. |
format | Online Article Text |
id | pubmed-9691911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The American Society of Hematology |
record_format | MEDLINE/PubMed |
spelling | pubmed-96919112022-11-30 A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma Thieblemont, Catherine Chartier, Loic Dührsen, Ulrich Vitolo, Umberto Barrington, Sally F. Zaucha, Jan M. Vercellino, Laetitia Gomes Silva, Maria Patrocinio-Carvalho, Ines Decazes, Pierre Viailly, Pierre-Julien Tilly, Herve Berriolo-Riedinger, Alina Casasnovas, Oliver Hüttmann, Andreas Ilyas, Hajira Mikhaeel, N. George Dunn, Joel Cottereau, Anne-Ségolène Schmitz, Christine Kostakoglu, Lale Paulson, Joseph N. Nielsen, Tina Meignan, Michael Blood Adv Regular Article Aggressive large B-cell lymphoma (LBCL) has variable outcomes. Current prognostic tools use factors for risk stratification that inadequately identify patients at high risk of refractory disease or relapse before initial treatment. A model associating 2 risk factors, total metabolic tumor volume (TMTV) >220 cm(3) (determined by fluorine-18 fluorodeoxyglucose positron emission tomography coupled with computed tomography) and performance status (PS) ≥2, identified as prognostic in 301 older patients in the REMARC trial (#NCT01122472), was validated in 2174 patients of all ages treated in 2 clinical trials, PETAL (Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas; N = 510) and GOYA (N = 1315), and in real-world clinics (N = 349) across Europe and the United States. Three risk categories, low (no factors), intermediate (1 risk factor), and high (2 risk factors), significantly discriminated outcome in most of the series. Patients with 2 risk factors had worse outcomes than patients with no risk factors in the PETAL, GOYA, and real-world series. Patients with intermediate risk also had significantly worse outcomes than patients with no risk factors. The TMTV/Eastern Cooperative Oncology Group-PS combination outperformed the International Prognostic Index with a positive C-index for progression-free survival and overall survival in most series. The combination of high TMTV > 220 cm(3) and ECOG-PS ≥ 2 is a simple clinical model to identify aggressive LBCL risk categories before treatment. This combination addresses the unmet need to better predict before treatment initiation for aggressive LBCL the patients likely to benefit the most or not at all from therapy. The American Society of Hematology 2022-09-02 /pmc/articles/PMC9691911/ /pubmed/36044385 http://dx.doi.org/10.1182/bloodadvances.2021006923 Text en © 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article Thieblemont, Catherine Chartier, Loic Dührsen, Ulrich Vitolo, Umberto Barrington, Sally F. Zaucha, Jan M. Vercellino, Laetitia Gomes Silva, Maria Patrocinio-Carvalho, Ines Decazes, Pierre Viailly, Pierre-Julien Tilly, Herve Berriolo-Riedinger, Alina Casasnovas, Oliver Hüttmann, Andreas Ilyas, Hajira Mikhaeel, N. George Dunn, Joel Cottereau, Anne-Ségolène Schmitz, Christine Kostakoglu, Lale Paulson, Joseph N. Nielsen, Tina Meignan, Michael A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma |
title | A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma |
title_full | A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma |
title_fullStr | A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma |
title_full_unstemmed | A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma |
title_short | A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma |
title_sort | tumor volume and performance status model to predict outcome before treatment in diffuse large b-cell lymphoma |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691911/ https://www.ncbi.nlm.nih.gov/pubmed/36044385 http://dx.doi.org/10.1182/bloodadvances.2021006923 |
work_keys_str_mv | AT thieblemontcatherine atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT chartierloic atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT duhrsenulrich atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT vitoloumberto atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT barringtonsallyf atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT zauchajanm atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT vercellinolaetitia atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT gomessilvamaria atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT patrociniocarvalhoines atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT decazespierre atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT viaillypierrejulien atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT tillyherve atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT berrioloriedingeralina atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT casasnovasoliver atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT huttmannandreas atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT ilyashajira atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT mikhaeelngeorge atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT dunnjoel atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT cottereauannesegolene atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT schmitzchristine atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT kostakoglulale atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT paulsonjosephn atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT nielsentina atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT meignanmichael atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT thieblemontcatherine tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT chartierloic tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT duhrsenulrich tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT vitoloumberto tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT barringtonsallyf tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT zauchajanm tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT vercellinolaetitia tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT gomessilvamaria tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT patrociniocarvalhoines tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT decazespierre tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT viaillypierrejulien tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT tillyherve tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT berrioloriedingeralina tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT casasnovasoliver tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT huttmannandreas tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT ilyashajira tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT mikhaeelngeorge tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT dunnjoel tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT cottereauannesegolene tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT schmitzchristine tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT kostakoglulale tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT paulsonjosephn tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT nielsentina tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma AT meignanmichael tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma |