Cargando…

A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma

Aggressive large B-cell lymphoma (LBCL) has variable outcomes. Current prognostic tools use factors for risk stratification that inadequately identify patients at high risk of refractory disease or relapse before initial treatment. A model associating 2 risk factors, total metabolic tumor volume (TM...

Descripción completa

Detalles Bibliográficos
Autores principales: Thieblemont, Catherine, Chartier, Loic, Dührsen, Ulrich, Vitolo, Umberto, Barrington, Sally F., Zaucha, Jan M., Vercellino, Laetitia, Gomes Silva, Maria, Patrocinio-Carvalho, Ines, Decazes, Pierre, Viailly, Pierre-Julien, Tilly, Herve, Berriolo-Riedinger, Alina, Casasnovas, Oliver, Hüttmann, Andreas, Ilyas, Hajira, Mikhaeel, N. George, Dunn, Joel, Cottereau, Anne-Ségolène, Schmitz, Christine, Kostakoglu, Lale, Paulson, Joseph N., Nielsen, Tina, Meignan, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society of Hematology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691911/
https://www.ncbi.nlm.nih.gov/pubmed/36044385
http://dx.doi.org/10.1182/bloodadvances.2021006923
_version_ 1784837137023107072
author Thieblemont, Catherine
Chartier, Loic
Dührsen, Ulrich
Vitolo, Umberto
Barrington, Sally F.
Zaucha, Jan M.
Vercellino, Laetitia
Gomes Silva, Maria
Patrocinio-Carvalho, Ines
Decazes, Pierre
Viailly, Pierre-Julien
Tilly, Herve
Berriolo-Riedinger, Alina
Casasnovas, Oliver
Hüttmann, Andreas
Ilyas, Hajira
Mikhaeel, N. George
Dunn, Joel
Cottereau, Anne-Ségolène
Schmitz, Christine
Kostakoglu, Lale
Paulson, Joseph N.
Nielsen, Tina
Meignan, Michael
author_facet Thieblemont, Catherine
Chartier, Loic
Dührsen, Ulrich
Vitolo, Umberto
Barrington, Sally F.
Zaucha, Jan M.
Vercellino, Laetitia
Gomes Silva, Maria
Patrocinio-Carvalho, Ines
Decazes, Pierre
Viailly, Pierre-Julien
Tilly, Herve
Berriolo-Riedinger, Alina
Casasnovas, Oliver
Hüttmann, Andreas
Ilyas, Hajira
Mikhaeel, N. George
Dunn, Joel
Cottereau, Anne-Ségolène
Schmitz, Christine
Kostakoglu, Lale
Paulson, Joseph N.
Nielsen, Tina
Meignan, Michael
author_sort Thieblemont, Catherine
collection PubMed
description Aggressive large B-cell lymphoma (LBCL) has variable outcomes. Current prognostic tools use factors for risk stratification that inadequately identify patients at high risk of refractory disease or relapse before initial treatment. A model associating 2 risk factors, total metabolic tumor volume (TMTV) >220 cm(3) (determined by fluorine-18 fluorodeoxyglucose positron emission tomography coupled with computed tomography) and performance status (PS) ≥2, identified as prognostic in 301 older patients in the REMARC trial (#NCT01122472), was validated in 2174 patients of all ages treated in 2 clinical trials, PETAL (Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas; N = 510) and GOYA (N = 1315), and in real-world clinics (N = 349) across Europe and the United States. Three risk categories, low (no factors), intermediate (1 risk factor), and high (2 risk factors), significantly discriminated outcome in most of the series. Patients with 2 risk factors had worse outcomes than patients with no risk factors in the PETAL, GOYA, and real-world series. Patients with intermediate risk also had significantly worse outcomes than patients with no risk factors. The TMTV/Eastern Cooperative Oncology Group-PS combination outperformed the International Prognostic Index with a positive C-index for progression-free survival and overall survival in most series. The combination of high TMTV > 220 cm(3) and ECOG-PS ≥ 2 is a simple clinical model to identify aggressive LBCL risk categories before treatment. This combination addresses the unmet need to better predict before treatment initiation for aggressive LBCL the patients likely to benefit the most or not at all from therapy.
format Online
Article
Text
id pubmed-9691911
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The American Society of Hematology
record_format MEDLINE/PubMed
spelling pubmed-96919112022-11-30 A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma Thieblemont, Catherine Chartier, Loic Dührsen, Ulrich Vitolo, Umberto Barrington, Sally F. Zaucha, Jan M. Vercellino, Laetitia Gomes Silva, Maria Patrocinio-Carvalho, Ines Decazes, Pierre Viailly, Pierre-Julien Tilly, Herve Berriolo-Riedinger, Alina Casasnovas, Oliver Hüttmann, Andreas Ilyas, Hajira Mikhaeel, N. George Dunn, Joel Cottereau, Anne-Ségolène Schmitz, Christine Kostakoglu, Lale Paulson, Joseph N. Nielsen, Tina Meignan, Michael Blood Adv Regular Article Aggressive large B-cell lymphoma (LBCL) has variable outcomes. Current prognostic tools use factors for risk stratification that inadequately identify patients at high risk of refractory disease or relapse before initial treatment. A model associating 2 risk factors, total metabolic tumor volume (TMTV) >220 cm(3) (determined by fluorine-18 fluorodeoxyglucose positron emission tomography coupled with computed tomography) and performance status (PS) ≥2, identified as prognostic in 301 older patients in the REMARC trial (#NCT01122472), was validated in 2174 patients of all ages treated in 2 clinical trials, PETAL (Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas; N = 510) and GOYA (N = 1315), and in real-world clinics (N = 349) across Europe and the United States. Three risk categories, low (no factors), intermediate (1 risk factor), and high (2 risk factors), significantly discriminated outcome in most of the series. Patients with 2 risk factors had worse outcomes than patients with no risk factors in the PETAL, GOYA, and real-world series. Patients with intermediate risk also had significantly worse outcomes than patients with no risk factors. The TMTV/Eastern Cooperative Oncology Group-PS combination outperformed the International Prognostic Index with a positive C-index for progression-free survival and overall survival in most series. The combination of high TMTV > 220 cm(3) and ECOG-PS ≥ 2 is a simple clinical model to identify aggressive LBCL risk categories before treatment. This combination addresses the unmet need to better predict before treatment initiation for aggressive LBCL the patients likely to benefit the most or not at all from therapy. The American Society of Hematology 2022-09-02 /pmc/articles/PMC9691911/ /pubmed/36044385 http://dx.doi.org/10.1182/bloodadvances.2021006923 Text en © 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Thieblemont, Catherine
Chartier, Loic
Dührsen, Ulrich
Vitolo, Umberto
Barrington, Sally F.
Zaucha, Jan M.
Vercellino, Laetitia
Gomes Silva, Maria
Patrocinio-Carvalho, Ines
Decazes, Pierre
Viailly, Pierre-Julien
Tilly, Herve
Berriolo-Riedinger, Alina
Casasnovas, Oliver
Hüttmann, Andreas
Ilyas, Hajira
Mikhaeel, N. George
Dunn, Joel
Cottereau, Anne-Ségolène
Schmitz, Christine
Kostakoglu, Lale
Paulson, Joseph N.
Nielsen, Tina
Meignan, Michael
A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma
title A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma
title_full A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma
title_fullStr A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma
title_full_unstemmed A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma
title_short A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma
title_sort tumor volume and performance status model to predict outcome before treatment in diffuse large b-cell lymphoma
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691911/
https://www.ncbi.nlm.nih.gov/pubmed/36044385
http://dx.doi.org/10.1182/bloodadvances.2021006923
work_keys_str_mv AT thieblemontcatherine atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT chartierloic atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT duhrsenulrich atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT vitoloumberto atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT barringtonsallyf atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT zauchajanm atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT vercellinolaetitia atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT gomessilvamaria atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT patrociniocarvalhoines atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT decazespierre atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT viaillypierrejulien atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT tillyherve atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT berrioloriedingeralina atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT casasnovasoliver atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT huttmannandreas atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT ilyashajira atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT mikhaeelngeorge atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT dunnjoel atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT cottereauannesegolene atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT schmitzchristine atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT kostakoglulale atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT paulsonjosephn atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT nielsentina atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT meignanmichael atumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT thieblemontcatherine tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT chartierloic tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT duhrsenulrich tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT vitoloumberto tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT barringtonsallyf tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT zauchajanm tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT vercellinolaetitia tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT gomessilvamaria tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT patrociniocarvalhoines tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT decazespierre tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT viaillypierrejulien tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT tillyherve tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT berrioloriedingeralina tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT casasnovasoliver tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT huttmannandreas tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT ilyashajira tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT mikhaeelngeorge tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT dunnjoel tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT cottereauannesegolene tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT schmitzchristine tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT kostakoglulale tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT paulsonjosephn tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT nielsentina tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma
AT meignanmichael tumorvolumeandperformancestatusmodeltopredictoutcomebeforetreatmentindiffuselargebcelllymphoma