Cargando…
Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling
The cellular response to hypoxia, in addition to HIF-dependent transcriptional reprogramming, also involves less characterized transcription-independent processes, such as alternative splicing of the VEGFA transcript leading to the production of the proangiogenic VEGF form. We now show that this eve...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692040/ https://www.ncbi.nlm.nih.gov/pubmed/36427398 http://dx.doi.org/10.1016/j.redox.2022.102545 |
_version_ | 1784837171456245760 |
---|---|
author | Taze, Chrysa Drakouli, Sotiria Samiotaki, Martina Panayotou, George Simos, George Georgatsou, Eleni Mylonis, Ilias |
author_facet | Taze, Chrysa Drakouli, Sotiria Samiotaki, Martina Panayotou, George Simos, George Georgatsou, Eleni Mylonis, Ilias |
author_sort | Taze, Chrysa |
collection | PubMed |
description | The cellular response to hypoxia, in addition to HIF-dependent transcriptional reprogramming, also involves less characterized transcription-independent processes, such as alternative splicing of the VEGFA transcript leading to the production of the proangiogenic VEGF form. We now show that this event depends on reorganization of the splicing machinery, triggered after short-term hypoxia by ROS production and intranuclear redistribution of the nucleoskeletal proteins SAFB1/2. Exposure to low oxygen causes fast dissociation of SAFB1/2 from the nuclear matrix, which is reversible, inhibited by antioxidant treatment, and also observed under normoxia when the mitochondrial electron transport chain is blocked. This is accompanied by altered interactions between SAFB1/2 and the splicing machinery, translocation of kinase SRPK1 to the cytoplasm, and dephosphorylation of RS-splicing factors. Depletion of SAFB1/2 under normoxia phenocopies the hypoxic and ROS-mediated switch in VEGF mRNA splicing. These data suggest that ROS-dependent remodeling of the nuclear architecture can promote production of splicing variants that facilitate adaptation to hypoxia. |
format | Online Article Text |
id | pubmed-9692040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96920402022-11-26 Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling Taze, Chrysa Drakouli, Sotiria Samiotaki, Martina Panayotou, George Simos, George Georgatsou, Eleni Mylonis, Ilias Redox Biol Research Paper The cellular response to hypoxia, in addition to HIF-dependent transcriptional reprogramming, also involves less characterized transcription-independent processes, such as alternative splicing of the VEGFA transcript leading to the production of the proangiogenic VEGF form. We now show that this event depends on reorganization of the splicing machinery, triggered after short-term hypoxia by ROS production and intranuclear redistribution of the nucleoskeletal proteins SAFB1/2. Exposure to low oxygen causes fast dissociation of SAFB1/2 from the nuclear matrix, which is reversible, inhibited by antioxidant treatment, and also observed under normoxia when the mitochondrial electron transport chain is blocked. This is accompanied by altered interactions between SAFB1/2 and the splicing machinery, translocation of kinase SRPK1 to the cytoplasm, and dephosphorylation of RS-splicing factors. Depletion of SAFB1/2 under normoxia phenocopies the hypoxic and ROS-mediated switch in VEGF mRNA splicing. These data suggest that ROS-dependent remodeling of the nuclear architecture can promote production of splicing variants that facilitate adaptation to hypoxia. Elsevier 2022-11-17 /pmc/articles/PMC9692040/ /pubmed/36427398 http://dx.doi.org/10.1016/j.redox.2022.102545 Text en © 2022 The Authors. Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Taze, Chrysa Drakouli, Sotiria Samiotaki, Martina Panayotou, George Simos, George Georgatsou, Eleni Mylonis, Ilias Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling |
title | Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling |
title_full | Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling |
title_fullStr | Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling |
title_full_unstemmed | Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling |
title_short | Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling |
title_sort | short-term hypoxia triggers ros and safb mediated nuclear matrix and mrna splicing remodeling |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692040/ https://www.ncbi.nlm.nih.gov/pubmed/36427398 http://dx.doi.org/10.1016/j.redox.2022.102545 |
work_keys_str_mv | AT tazechrysa shorttermhypoxiatriggersrosandsafbmediatednuclearmatrixandmrnasplicingremodeling AT drakoulisotiria shorttermhypoxiatriggersrosandsafbmediatednuclearmatrixandmrnasplicingremodeling AT samiotakimartina shorttermhypoxiatriggersrosandsafbmediatednuclearmatrixandmrnasplicingremodeling AT panayotougeorge shorttermhypoxiatriggersrosandsafbmediatednuclearmatrixandmrnasplicingremodeling AT simosgeorge shorttermhypoxiatriggersrosandsafbmediatednuclearmatrixandmrnasplicingremodeling AT georgatsoueleni shorttermhypoxiatriggersrosandsafbmediatednuclearmatrixandmrnasplicingremodeling AT mylonisilias shorttermhypoxiatriggersrosandsafbmediatednuclearmatrixandmrnasplicingremodeling |