Cargando…
Airborne Radar Anti-Jamming Waveform Design Based on Deep Reinforcement Learning
Airborne radars are susceptible to a large number of clutter, noise and variable jamming signals in the real environment, especially when faced with active main lobe jamming, as the waveform shortcut technology in the traditional regime can no longer meet the actual battlefield radar anti-jamming re...
Autores principales: | Zheng, Zexin, Li, Wei, Zou, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692253/ https://www.ncbi.nlm.nih.gov/pubmed/36433285 http://dx.doi.org/10.3390/s22228689 |
Ejemplares similares
-
Deep Reinforcement Learning Based Decision Making for Complex Jamming Waveforms
por: Xu, Yuting, et al.
Publicado: (2022) -
Target Tracking While Jamming by Airborne Radar for Low Probability of Detection
por: Wang, Fei, et al.
Publicado: (2018) -
Wideband Waveform Design for Distributed Precision Jamming
por: Zhang, Kedi, et al.
Publicado: (2023) -
An Adaptive Multi-Target Jamming Waveform Design Based on Power Minimization
por: Gao, Jing, et al.
Publicado: (2020) -
Radar waveform design based on optimization theory
por: Cui, Guolong, et al.
Publicado: (2020)