Cargando…
Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method
Humans are exposed to thousands of chemicals, including environmental chemicals. Unfortunately, little is known about their potential toxicity, as determining the toxicity remains challenging due to the substantial resources required to assess a chemical in vivo. Here, we present a novel hybrid neur...
Autores principales: | Limbu, Sarita, Zakka, Cyril, Dakshanamurthy, Sivanesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692315/ https://www.ncbi.nlm.nih.gov/pubmed/36422913 http://dx.doi.org/10.3390/toxics10110706 |
Ejemplares similares
-
Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method
por: Limbu, Sarita, et al.
Publicado: (2022) -
Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach
por: Limbu, Sarita, et al.
Publicado: (2023) -
A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design
por: Limbu, Sarita, et al.
Publicado: (2022) -
IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method
por: Suri, Sadhana, et al.
Publicado: (2022) -
ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening
por: Issa, Naiem T., et al.
Publicado: (2022)