Cargando…
An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis o...
Autores principales: | Zhang, Long, Liu, Yangyuan, Zhou, Jianmin, Luo, Muxu, Pu, Shengxin, Yang, Xiaotong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692439/ https://www.ncbi.nlm.nih.gov/pubmed/36433352 http://dx.doi.org/10.3390/s22228749 |
Ejemplares similares
-
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
por: Xiao, Qiyang, et al.
Publicado: (2022) -
Rotating Machinery Fault Diagnosis Method by Combining Time-Frequency Domain Features and CNN Knowledge Transfer
por: Ye, Lihao, et al.
Publicado: (2021) -
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022) -
A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion
por: Gong, Wenfeng, et al.
Publicado: (2019) -
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
por: Lu, Chen, et al.
Publicado: (2016)