Cargando…
Virtual Axle Detector Based on Analysis of Bridge Acceleration Measurements by Fully Convolutional Network
In the practical application of the Bridge Weigh-In-Motion (BWIM) methods, the position of the wheels or axles during the passage of a vehicle is a prerequisite in most cases. To avoid the use of conventional axle detectors and bridge type-specific methods, we propose a novel method for axle detecti...
Autores principales: | Lorenzen, Steven Robert, Riedel, Henrik, Rupp, Maximilian Michael, Schmeiser, Leon, Berthold, Hagen, Firus, Andrei, Schneider, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692483/ https://www.ncbi.nlm.nih.gov/pubmed/36433559 http://dx.doi.org/10.3390/s22228963 |
Ejemplares similares
-
Contactless Deformation Monitoring of Bridges with Spatio-Temporal Resolution: Profile Scanning and Microwave Interferometry
por: Schill, Florian, et al.
Publicado: (2022) -
Giving AXL the axe: targeting AXL in human malignancy
por: Gay, Carl M, et al.
Publicado: (2017) -
Evaluating Degradation at Railway Crossings Using Axle Box Acceleration Measurements
por: Wei, Zilong, et al.
Publicado: (2017) -
Accelerating the Shuttling
in Hydrogen-Bonded Rotaxanes:
Active Role of the Axle and the End Station
por: Kumpulainen, Tatu, et al.
Publicado: (2019) -
Automatic Detection of Cone Photoreceptors With Fully Convolutional Networks
por: Hamwood, Jared, et al.
Publicado: (2019)