Cargando…

First Report of the Molecular Mechanism of Resistance to Tribenuron-Methyl in Silene conoidea L.

Silene conoidea L. is an annual troublesome broadleaf weed in winter wheat fields in China. In recent years, field applications of tribenuron-methyl have been ineffective in controlling S. conoidea in Hebei Province, China. The aim of this study was to determine the molecular basis of tribenuron-met...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Ying, Han, Yujun, Ma, Hong, Wei, Shouhui, Lan, Yuning, Cao, Yi, Huang, Hongjuan, Huang, Zhaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692542/
https://www.ncbi.nlm.nih.gov/pubmed/36432773
http://dx.doi.org/10.3390/plants11223044
Descripción
Sumario:Silene conoidea L. is an annual troublesome broadleaf weed in winter wheat fields in China. In recent years, field applications of tribenuron-methyl have been ineffective in controlling S. conoidea in Hebei Province, China. The aim of this study was to determine the molecular basis of tribenuron-methyl resistance in S. conoidea. Whole-plant response assays revealed that the resistant population (R) exhibited a higher level of resistance (382.3-fold) to tribenuron-methyl. The R population also showed high cross-resistance to other acetolactate synthase (ALS) inhibitors, including imazethapyr, bispyribac-sodium and florasulam. However, the R population could be controlled by the field-recommended rates of bentazone, MCPA, fluroxypyr, carfentrazone-ethyl and bromoxynil. In vitro ALS activity assays indicated that the tribenuron-methyl I(50) value for the R population was 18.5 times higher than those for the susceptible population (S). ALS gene sequencing revealed an amino acid mutation, Trp-574-Leu, in the R population. Pretreatment with the P450 inhibitor malathion indicated that the R population might have cytochrome P450-mediated metabolic resistance. These results suggest that the Trp-574-Leu mutation and P450-mediated enhanced metabolism coexist in S. conoidea to generate tribenuron-methyl resistance. This is the first time that target-site and non-target-site resistance to tribenuron-methyl has been reported in S. conoidea.