Cargando…
Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar
Populus is a genus of globally significant plantation trees used widely in industrial and agricultural production. Poplars are easily damaged by Micromelalopha troglodyta and Hyphantria cunea, resulting in decreasing quality. Bt toxin-encoded by the Cry gene has been widely adopted in poplar breedin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692618/ https://www.ncbi.nlm.nih.gov/pubmed/36362985 http://dx.doi.org/10.3390/life12111830 |
Sumario: | Populus is a genus of globally significant plantation trees used widely in industrial and agricultural production. Poplars are easily damaged by Micromelalopha troglodyta and Hyphantria cunea, resulting in decreasing quality. Bt toxin-encoded by the Cry gene has been widely adopted in poplar breeding because of its strong insect resistance. There is still no comprehensive and sufficient information about the effects of Cry1Ah1-modified (CM) poplars on the ecological environment. Here, we sampled the rhizosphere soils of field-grown CM and non-transgenic (NT) poplars and applied 16S rRNA and internal transcribed spacer amplicon Illumina MiSeq sequencing to determine the bacterial community associated with the CM and NT poplars. Based on the high-throughput sequencing of samples, we found that the predominant taxa included Proteobacteria (about 40% of the total bacteria), Acidobacteria (about 20% of the total bacteria), and Actinobacteria (about 20% of the total bacteria) collected from the natural rhizosphere of NT and CM poplars. In addition, studies on the microbial diversity of poplar showed that Cry1Ah1 expression has no significant influence on rhizosphere soil alkaline nitrogen, but significantly affects soil phosphorus, soil microbial biomass nitrogen, and carbon. The results exhibited a similar bacterial community structure between CM varieties affected by the expression of Cry1Ah1 and non-transgenic poplars. In addition, Cry1Ah1 expression revealed no significant influence on the composition of rhizosphere microbiomes. These results broadly reflect the effect of the Bt toxin-encoded by Cry1Ah1 on the ecology and environment and provide a clear path for researchers to continue research in this field in the future. |
---|