Cargando…
Periocular Data Fusion for Age and Gender Classification
In recent years, the study of soft biometrics has gained increasing interest in the security and business sectors. These characteristics provide limited biometric information about the individual; hence, it is possible to increase performance by combining numerous data sources to overcome the accura...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692660/ https://www.ncbi.nlm.nih.gov/pubmed/36354880 http://dx.doi.org/10.3390/jimaging8110307 |
_version_ | 1784837323358208000 |
---|---|
author | Bisogni, Carmen Cascone, Lucia Narducci, Fabio |
author_facet | Bisogni, Carmen Cascone, Lucia Narducci, Fabio |
author_sort | Bisogni, Carmen |
collection | PubMed |
description | In recent years, the study of soft biometrics has gained increasing interest in the security and business sectors. These characteristics provide limited biometric information about the individual; hence, it is possible to increase performance by combining numerous data sources to overcome the accuracy limitations of a single trait. In this research, we provide a study on the fusion of periocular features taken from pupils, fixations, and blinks to achieve a demographic classification, i.e., by age and gender. A data fusion approach is implemented for this purpose. To build a trust evaluation of the selected biometric traits, we first employ a concatenation scheme for fusion at the feature level and, at the score level, transformation and classifier-based score fusion approaches (e.g., weighted sum, weighted product, Bayesian rule, etc.). Data fusion enables improved performance and the synthesis of acquired information, as well as its secure storage and protection of the multi-biometric system’s original biometric models. The combination of these soft biometrics characteristics combines flawlessly the need to protect individual privacy and to have a strong discriminatory element. The results are quite encouraging, with an age classification accuracy of 84.45% and a gender classification accuracy of 84.62%, respectively. The results obtained encourage the studies on periocular area to detect soft biometrics to be applied when the lower part of the face is not visible. |
format | Online Article Text |
id | pubmed-9692660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96926602022-11-26 Periocular Data Fusion for Age and Gender Classification Bisogni, Carmen Cascone, Lucia Narducci, Fabio J Imaging Article In recent years, the study of soft biometrics has gained increasing interest in the security and business sectors. These characteristics provide limited biometric information about the individual; hence, it is possible to increase performance by combining numerous data sources to overcome the accuracy limitations of a single trait. In this research, we provide a study on the fusion of periocular features taken from pupils, fixations, and blinks to achieve a demographic classification, i.e., by age and gender. A data fusion approach is implemented for this purpose. To build a trust evaluation of the selected biometric traits, we first employ a concatenation scheme for fusion at the feature level and, at the score level, transformation and classifier-based score fusion approaches (e.g., weighted sum, weighted product, Bayesian rule, etc.). Data fusion enables improved performance and the synthesis of acquired information, as well as its secure storage and protection of the multi-biometric system’s original biometric models. The combination of these soft biometrics characteristics combines flawlessly the need to protect individual privacy and to have a strong discriminatory element. The results are quite encouraging, with an age classification accuracy of 84.45% and a gender classification accuracy of 84.62%, respectively. The results obtained encourage the studies on periocular area to detect soft biometrics to be applied when the lower part of the face is not visible. MDPI 2022-11-09 /pmc/articles/PMC9692660/ /pubmed/36354880 http://dx.doi.org/10.3390/jimaging8110307 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bisogni, Carmen Cascone, Lucia Narducci, Fabio Periocular Data Fusion for Age and Gender Classification |
title | Periocular Data Fusion for Age and Gender Classification |
title_full | Periocular Data Fusion for Age and Gender Classification |
title_fullStr | Periocular Data Fusion for Age and Gender Classification |
title_full_unstemmed | Periocular Data Fusion for Age and Gender Classification |
title_short | Periocular Data Fusion for Age and Gender Classification |
title_sort | periocular data fusion for age and gender classification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692660/ https://www.ncbi.nlm.nih.gov/pubmed/36354880 http://dx.doi.org/10.3390/jimaging8110307 |
work_keys_str_mv | AT bisognicarmen perioculardatafusionforageandgenderclassification AT casconelucia perioculardatafusionforageandgenderclassification AT narduccifabio perioculardatafusionforageandgenderclassification |