Cargando…
A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation
The manipulation and understanding of molecular transport across functionalized nanopores will take us closer to mimicking biological membranes and thus to design high-performance permselective separation systems. In this work, Surface-initiated atom transfer radical polymerization (SI-ATRP) of (2-m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692692/ https://www.ncbi.nlm.nih.gov/pubmed/36432949 http://dx.doi.org/10.3390/polym14224823 |
_version_ | 1784837331716407296 |
---|---|
author | Alberti, Sebastian Giussi, Juan Azzaroni, Omar Soler-Illia, Galo J. A. A. |
author_facet | Alberti, Sebastian Giussi, Juan Azzaroni, Omar Soler-Illia, Galo J. A. A. |
author_sort | Alberti, Sebastian |
collection | PubMed |
description | The manipulation and understanding of molecular transport across functionalized nanopores will take us closer to mimicking biological membranes and thus to design high-performance permselective separation systems. In this work, Surface-initiated atom transfer radical polymerization (SI-ATRP) of (2-methacryloyloxy)-ethyltrimethylammonium chloride (METAC) was performed on both mesoporous silica and mesoporous titania thin films. Pores were proven to be filled using ellipsometry and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Furthermore, the employed method leads to a polymer overlayer, whose thickness could be discriminated using a double-layer ellipsometry model. Cyclic voltammetry experiments reveal that the transport of electrochemically active probes is affected by the PMETAC presence, both due to the polymer overlayer and the confined charge of the pore-tethered PMETAC. A more detailed study demonstrates that ion permeability depends on the combined role of the inorganic scaffolds’ (titania and silica) surface chemistry and the steric and charge exclusion properties of the polyelectrolyte. Interestingly, highly charged negative walls with positively charged polymers may resemble zwitterionic polymer behavior in confined environments. |
format | Online Article Text |
id | pubmed-9692692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96926922022-11-26 A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation Alberti, Sebastian Giussi, Juan Azzaroni, Omar Soler-Illia, Galo J. A. A. Polymers (Basel) Article The manipulation and understanding of molecular transport across functionalized nanopores will take us closer to mimicking biological membranes and thus to design high-performance permselective separation systems. In this work, Surface-initiated atom transfer radical polymerization (SI-ATRP) of (2-methacryloyloxy)-ethyltrimethylammonium chloride (METAC) was performed on both mesoporous silica and mesoporous titania thin films. Pores were proven to be filled using ellipsometry and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Furthermore, the employed method leads to a polymer overlayer, whose thickness could be discriminated using a double-layer ellipsometry model. Cyclic voltammetry experiments reveal that the transport of electrochemically active probes is affected by the PMETAC presence, both due to the polymer overlayer and the confined charge of the pore-tethered PMETAC. A more detailed study demonstrates that ion permeability depends on the combined role of the inorganic scaffolds’ (titania and silica) surface chemistry and the steric and charge exclusion properties of the polyelectrolyte. Interestingly, highly charged negative walls with positively charged polymers may resemble zwitterionic polymer behavior in confined environments. MDPI 2022-11-09 /pmc/articles/PMC9692692/ /pubmed/36432949 http://dx.doi.org/10.3390/polym14224823 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alberti, Sebastian Giussi, Juan Azzaroni, Omar Soler-Illia, Galo J. A. A. A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation |
title | A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation |
title_full | A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation |
title_fullStr | A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation |
title_full_unstemmed | A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation |
title_short | A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation |
title_sort | comparative study of pmetac-modified mesoporous silica and titania thin films for molecular transport manipulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692692/ https://www.ncbi.nlm.nih.gov/pubmed/36432949 http://dx.doi.org/10.3390/polym14224823 |
work_keys_str_mv | AT albertisebastian acomparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation AT giussijuan acomparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation AT azzaroniomar acomparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation AT solerilliagalojaa acomparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation AT albertisebastian comparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation AT giussijuan comparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation AT azzaroniomar comparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation AT solerilliagalojaa comparativestudyofpmetacmodifiedmesoporoussilicaandtitaniathinfilmsformoleculartransportmanipulation |