Cargando…

Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2

This study established a portable and ultrasensitive detection method based on recombinase polymerase amplification (RPA) combined with high-sensitivity multilayer quantum dot (MQD)-based immunochromatographic assay (ICA) to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Guangyu, Yang, Xingsheng, Dong, Hao, Tu, Zhijie, Zhou, Yong, Rong, Zhen, Wang, Shengqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692701/
https://www.ncbi.nlm.nih.gov/pubmed/36365002
http://dx.doi.org/10.3390/pathogens11111252
_version_ 1784837334210969600
author Wang, Guangyu
Yang, Xingsheng
Dong, Hao
Tu, Zhijie
Zhou, Yong
Rong, Zhen
Wang, Shengqi
author_facet Wang, Guangyu
Yang, Xingsheng
Dong, Hao
Tu, Zhijie
Zhou, Yong
Rong, Zhen
Wang, Shengqi
author_sort Wang, Guangyu
collection PubMed
description This study established a portable and ultrasensitive detection method based on recombinase polymerase amplification (RPA) combined with high-sensitivity multilayer quantum dot (MQD)-based immunochromatographic assay (ICA) to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The RPA-MQD-based ICA method is reported for the first time and has the following advantages: (i) RPA is free from the constraints of instruments and can be promoted in point-of-care testing (POCT) scenarios, (ii) fluorescence ICA enhances the portability of detection operation so that the entire operation time is controlled within 1 h, and (iii) compared with common colorimetric-based RPA-ICA, the proposed assay used MQD to provide strong and quantifiable fluorescence signal, thus enhancing the detection sensitivity. With this strategy, the proposed RPA-MQD-based ICA can amplify and detect the SARS-CoV-2 nucleic acid on-site with a sensitivity of 2 copies/reaction, which is comparable to the sensitivity of commercial reverse transcription quantitative polymerase chain reaction (RT-qPCR) kits. Moreover, the designed primers did not cross-react with other common respiratory viruses, including adenovirus, influenza virus A, and influenza virus B, suggesting high specificity. Thus, the established portable method can sensitively detect SARS-CoV-2 nucleic acid without relying on equipment, having good application prospects in SARS-CoV-2 detection scenarios under non-lab conditions.
format Online
Article
Text
id pubmed-9692701
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96927012022-11-26 Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2 Wang, Guangyu Yang, Xingsheng Dong, Hao Tu, Zhijie Zhou, Yong Rong, Zhen Wang, Shengqi Pathogens Article This study established a portable and ultrasensitive detection method based on recombinase polymerase amplification (RPA) combined with high-sensitivity multilayer quantum dot (MQD)-based immunochromatographic assay (ICA) to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The RPA-MQD-based ICA method is reported for the first time and has the following advantages: (i) RPA is free from the constraints of instruments and can be promoted in point-of-care testing (POCT) scenarios, (ii) fluorescence ICA enhances the portability of detection operation so that the entire operation time is controlled within 1 h, and (iii) compared with common colorimetric-based RPA-ICA, the proposed assay used MQD to provide strong and quantifiable fluorescence signal, thus enhancing the detection sensitivity. With this strategy, the proposed RPA-MQD-based ICA can amplify and detect the SARS-CoV-2 nucleic acid on-site with a sensitivity of 2 copies/reaction, which is comparable to the sensitivity of commercial reverse transcription quantitative polymerase chain reaction (RT-qPCR) kits. Moreover, the designed primers did not cross-react with other common respiratory viruses, including adenovirus, influenza virus A, and influenza virus B, suggesting high specificity. Thus, the established portable method can sensitively detect SARS-CoV-2 nucleic acid without relying on equipment, having good application prospects in SARS-CoV-2 detection scenarios under non-lab conditions. MDPI 2022-10-28 /pmc/articles/PMC9692701/ /pubmed/36365002 http://dx.doi.org/10.3390/pathogens11111252 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Guangyu
Yang, Xingsheng
Dong, Hao
Tu, Zhijie
Zhou, Yong
Rong, Zhen
Wang, Shengqi
Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2
title Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2
title_full Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2
title_fullStr Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2
title_full_unstemmed Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2
title_short Recombinase Polymerase Amplification Combined with Fluorescence Immunochromatography Assay for On-Site and Ultrasensitive Detection of SARS-CoV-2
title_sort recombinase polymerase amplification combined with fluorescence immunochromatography assay for on-site and ultrasensitive detection of sars-cov-2
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692701/
https://www.ncbi.nlm.nih.gov/pubmed/36365002
http://dx.doi.org/10.3390/pathogens11111252
work_keys_str_mv AT wangguangyu recombinasepolymeraseamplificationcombinedwithfluorescenceimmunochromatographyassayforonsiteandultrasensitivedetectionofsarscov2
AT yangxingsheng recombinasepolymeraseamplificationcombinedwithfluorescenceimmunochromatographyassayforonsiteandultrasensitivedetectionofsarscov2
AT donghao recombinasepolymeraseamplificationcombinedwithfluorescenceimmunochromatographyassayforonsiteandultrasensitivedetectionofsarscov2
AT tuzhijie recombinasepolymeraseamplificationcombinedwithfluorescenceimmunochromatographyassayforonsiteandultrasensitivedetectionofsarscov2
AT zhouyong recombinasepolymeraseamplificationcombinedwithfluorescenceimmunochromatographyassayforonsiteandultrasensitivedetectionofsarscov2
AT rongzhen recombinasepolymeraseamplificationcombinedwithfluorescenceimmunochromatographyassayforonsiteandultrasensitivedetectionofsarscov2
AT wangshengqi recombinasepolymeraseamplificationcombinedwithfluorescenceimmunochromatographyassayforonsiteandultrasensitivedetectionofsarscov2