Cargando…

Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis

Palmitic acid (PA) can lead to intestinal epithelial barrier dysfunction. In this study, the protective effects and working mechanisms of 6-shogaol against PA-induced intestinal barrier dysfunction were investigated in human intestinal epithelial Caco-2 cells. Transepithelial electrical resistance (...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouyang, Fangxin, Li, Bo, Wang, Yuli, Xu, Longhua, Li, Dapeng, Li, Feng, Sun-Waterhouse, Dongxiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692742/
https://www.ncbi.nlm.nih.gov/pubmed/36355111
http://dx.doi.org/10.3390/metabo12111028
_version_ 1784837344775372800
author Ouyang, Fangxin
Li, Bo
Wang, Yuli
Xu, Longhua
Li, Dapeng
Li, Feng
Sun-Waterhouse, Dongxiao
author_facet Ouyang, Fangxin
Li, Bo
Wang, Yuli
Xu, Longhua
Li, Dapeng
Li, Feng
Sun-Waterhouse, Dongxiao
author_sort Ouyang, Fangxin
collection PubMed
description Palmitic acid (PA) can lead to intestinal epithelial barrier dysfunction. In this study, the protective effects and working mechanisms of 6-shogaol against PA-induced intestinal barrier dysfunction were investigated in human intestinal epithelial Caco-2 cells. Transepithelial electrical resistance (TEER), paracellular flux, qRT-PCR, immunofluorescence, and Western blot experiments showed that the 24-h treatment with 400 μM PA damaged intestinal barrier integrity, as evidenced by a reduction of 48% in the TEER value, a 4.1-fold increase in the flux of fluorescein isothiocyanate-dextran 4000 (FD-4), and decreases in the mRNA and protein expression of tight junction (TJ)-associated proteins (claudin-1, occludin, and ZO-1), compared with the control. The PA treatment significantly (p < 0.05) increased the levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α)) in Caco-2 cells due to the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylated nuclear factor kappa-B (NF-κB) proteins, and downregulation of miR-216a-5p (which directly targeted TLR4). Co-treatment with PA and 6-shogaol (2.5 μM) significantly (p < 0.05) attenuated PA-induced changes through regulation of TJs via the miR-216a-5p/TLR4/NF-κB signaling pathway. This study provides insights into the functions and working mechanisms of 6-shogaol as a promising food-derived agent against PA-induced intestinal epithelial barrier dysfunction.
format Online
Article
Text
id pubmed-9692742
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96927422022-11-26 Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis Ouyang, Fangxin Li, Bo Wang, Yuli Xu, Longhua Li, Dapeng Li, Feng Sun-Waterhouse, Dongxiao Metabolites Article Palmitic acid (PA) can lead to intestinal epithelial barrier dysfunction. In this study, the protective effects and working mechanisms of 6-shogaol against PA-induced intestinal barrier dysfunction were investigated in human intestinal epithelial Caco-2 cells. Transepithelial electrical resistance (TEER), paracellular flux, qRT-PCR, immunofluorescence, and Western blot experiments showed that the 24-h treatment with 400 μM PA damaged intestinal barrier integrity, as evidenced by a reduction of 48% in the TEER value, a 4.1-fold increase in the flux of fluorescein isothiocyanate-dextran 4000 (FD-4), and decreases in the mRNA and protein expression of tight junction (TJ)-associated proteins (claudin-1, occludin, and ZO-1), compared with the control. The PA treatment significantly (p < 0.05) increased the levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α)) in Caco-2 cells due to the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylated nuclear factor kappa-B (NF-κB) proteins, and downregulation of miR-216a-5p (which directly targeted TLR4). Co-treatment with PA and 6-shogaol (2.5 μM) significantly (p < 0.05) attenuated PA-induced changes through regulation of TJs via the miR-216a-5p/TLR4/NF-κB signaling pathway. This study provides insights into the functions and working mechanisms of 6-shogaol as a promising food-derived agent against PA-induced intestinal epithelial barrier dysfunction. MDPI 2022-10-26 /pmc/articles/PMC9692742/ /pubmed/36355111 http://dx.doi.org/10.3390/metabo12111028 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ouyang, Fangxin
Li, Bo
Wang, Yuli
Xu, Longhua
Li, Dapeng
Li, Feng
Sun-Waterhouse, Dongxiao
Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis
title Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis
title_full Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis
title_fullStr Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis
title_full_unstemmed Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis
title_short Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis
title_sort attenuation of palmitic acid-induced intestinal epithelial barrier dysfunction by 6-shogaol in caco-2 cells: the role of mir-216a-5p/tlr4/nf-κb axis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692742/
https://www.ncbi.nlm.nih.gov/pubmed/36355111
http://dx.doi.org/10.3390/metabo12111028
work_keys_str_mv AT ouyangfangxin attenuationofpalmiticacidinducedintestinalepithelialbarrierdysfunctionby6shogaolincaco2cellstheroleofmir216a5ptlr4nfkbaxis
AT libo attenuationofpalmiticacidinducedintestinalepithelialbarrierdysfunctionby6shogaolincaco2cellstheroleofmir216a5ptlr4nfkbaxis
AT wangyuli attenuationofpalmiticacidinducedintestinalepithelialbarrierdysfunctionby6shogaolincaco2cellstheroleofmir216a5ptlr4nfkbaxis
AT xulonghua attenuationofpalmiticacidinducedintestinalepithelialbarrierdysfunctionby6shogaolincaco2cellstheroleofmir216a5ptlr4nfkbaxis
AT lidapeng attenuationofpalmiticacidinducedintestinalepithelialbarrierdysfunctionby6shogaolincaco2cellstheroleofmir216a5ptlr4nfkbaxis
AT lifeng attenuationofpalmiticacidinducedintestinalepithelialbarrierdysfunctionby6shogaolincaco2cellstheroleofmir216a5ptlr4nfkbaxis
AT sunwaterhousedongxiao attenuationofpalmiticacidinducedintestinalepithelialbarrierdysfunctionby6shogaolincaco2cellstheroleofmir216a5ptlr4nfkbaxis