Cargando…
HybriDC: A Resource-Efficient CPU-FPGA Heterogeneous Acceleration System for Lossless Data Compression
Lossless data compression is a crucial and computing-intensive application in data-centric scenarios. To reduce the CPU overhead, FPGA-based accelerators have been proposed to offload compression workloads. However, most existing schemes have the problem of an imbalanced resource utilization and a p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692890/ https://www.ncbi.nlm.nih.gov/pubmed/36422458 http://dx.doi.org/10.3390/mi13112029 |
Sumario: | Lossless data compression is a crucial and computing-intensive application in data-centric scenarios. To reduce the CPU overhead, FPGA-based accelerators have been proposed to offload compression workloads. However, most existing schemes have the problem of an imbalanced resource utilization and a poor practicability. In this paper, we propose HybriDC, an adaptive resource-efficient CPU-FPGA heterogeneous acceleration system for lossless data compression. Leveraging complementary advantages of the heterogeneous architecture, HybriDC provides a universal end-to-end compression acceleration framework with application compatibility and performance scalability. To optimize the hardware compression kernel design, we build a performance–resource model of the compression algorithm taking into account the design goal, compression performance, available resources, etc. According to the deduced resource-balanced design principle, the compression algorithm parameters are fine-tuned, which reduces 32% of the block RAM usage of the LZ4 kernel. In the parallel compression kernel implementation, a memory-efficient parallel hash table with an extra checksum is proposed, which supports parallel processing and improves the compression ratio without extra memory. We develop an LZ4-based HybriDC system prototype and evaluate it in detail. Our LZ4 compression kernel achieves state-of-the-art memory efficiency, 2.5–4× better than existing designs with comparable compression ratios. The evaluation of total resource utilization and end-to-end throughput demonstrates the excellent scalability of HybriDC. In power efficiency, the four-kernel HybriDC prototype achieves a threefold advantage over the standard LZ4 algorithm. |
---|