Cargando…
Structures Controlled by Entropy: The Flexibility of Strychnine as Example
To study the flexibility of strychnine, we performed molecular dynamics simulations with orientational tensorial constraints (MDOC). Tensorial constraints are derived from nuclear magnetic resonance (NMR) interaction tensors, for instance, from residual dipolar couplings (RDCs). Used as orientationa...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692940/ https://www.ncbi.nlm.nih.gov/pubmed/36432085 http://dx.doi.org/10.3390/molecules27227987 |
Sumario: | To study the flexibility of strychnine, we performed molecular dynamics simulations with orientational tensorial constraints (MDOC). Tensorial constraints are derived from nuclear magnetic resonance (NMR) interaction tensors, for instance, from residual dipolar couplings (RDCs). Used as orientational constraints, they rotate the whole molecule and molecular parts with low rotational barriers. Since the NMR parameters are measured at ambient temperatures, orientational constraints generate conformers that populate the whole landscape of Gibbs free energy. In MDOC, structures are populated that are not only controlled by energy but by the entropy term TΔS of the Gibbs free energy. In the case of strychnine, it is shown that ring conformers are populated, which has not been discussed in former investigations. These conformer populations are not only in accordance with RDCs but fulfill nuclear Overhauser effect (NOE)-derived distance constraints and (3)J(HH) couplings as well. |
---|