Cargando…
Analysis of and Reduction in Noise in Current Measurement of XCP under the Laboratory Condition
Expendable current profiler (XCP) is one of the most vital devices detecting ocean currents. Compared with other methods, the expendable feature makes trials with XCP much faster and more hidden, while the accuracy of XCP is considerably influenced by electromagnetic noise all around. Aiming at rese...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692991/ https://www.ncbi.nlm.nih.gov/pubmed/36433312 http://dx.doi.org/10.3390/s22228715 |
Sumario: | Expendable current profiler (XCP) is one of the most vital devices detecting ocean currents. Compared with other methods, the expendable feature makes trials with XCP much faster and more hidden, while the accuracy of XCP is considerably influenced by electromagnetic noise all around. Aiming at researching the influence and reducing the noise, this study carried out laboratory simulation experiments. The designed laboratory experiments mainly have a self-developed rotation gear, an XCP prototype, a plastic flume, and two copper plates as power. Firstly, these experiments analyzed the main sources of electromagnetic noise for XCP detection. Secondly, we built a noise simulation environment and conducted XCP detection experiments under different noise in the flume. The data obtained by XCP were transmitted to the computer to be stored and processed. The results show the internal noise impact on XCP is significantly less than the external. For an excitation power of 1 mV, the offset of theoretical and actual data brought by internal noise is 12 times smaller than external and can be corrected. |
---|