Cargando…

Isoliquiritigenin Protects Neuronal Cells against Glutamate Excitotoxicity

It is considered that glutamate excitotoxicity may be a major factor in the pathological death of neurons and mediate the development of neurodegenerative diseases in humans. Here, we show that isoliquiritigenin (ILG) at a concentration of 0.5–5 µM protects primary neuroglial cell culture from gluta...

Descripción completa

Detalles Bibliográficos
Autores principales: Zgodova, Arina, Pavlova, Svetlana, Nekrasova, Anastasia, Boyarkin, Dmitriy, Pinelis, Vsevolod, Surin, Alexander, Bakaeva, Zanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693036/
https://www.ncbi.nlm.nih.gov/pubmed/36363608
http://dx.doi.org/10.3390/membranes12111052
Descripción
Sumario:It is considered that glutamate excitotoxicity may be a major factor in the pathological death of neurons and mediate the development of neurodegenerative diseases in humans. Here, we show that isoliquiritigenin (ILG) at a concentration of 0.5–5 µM protects primary neuroglial cell culture from glutamate-induced death (glutamate 100 µM). ILG (1 µM) prevented a sharp increase in [Ca(2+)](i) and a decrease in mitochondrial potential (ΔΨm). With the background action of ILG (1–5 µM), there was an increase in oxygen consumption rate (OCR) in response to glutamate, as well as in reserve respiration. The neuroprotective effect of ILG (5 µM) was accompanied by an increase in non-mitochondrial respiration. The results show that ILG can protect cortical neurons from death by preventing the development of calcium deregulation and limiting mitochondrial dysfunction caused by a high dose of glutamate. We hypothesize that ILG will be useful in drug development for the prevention or treatment of neurodegenerative diseases accompanied by glutamate excitotoxicity.