Cargando…
Tribological Properties of Solid Lubricant WS(2) in Dimples on the Cylinder of Diesel Engine at High Temperature
Solid lubricant WS(2) was encapsulated in the dimples on the cylinder surface by the hot-pressing method. The tribological and releasing performance of the as-prepared sample were investigated under high temperature conditions. The results indicate that, compared with the original cylinder, WS(2) in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693081/ https://www.ncbi.nlm.nih.gov/pubmed/36431644 http://dx.doi.org/10.3390/ma15228161 |
Sumario: | Solid lubricant WS(2) was encapsulated in the dimples on the cylinder surface by the hot-pressing method. The tribological and releasing performance of the as-prepared sample were investigated under high temperature conditions. The results indicate that, compared with the original cylinder, WS(2) in the dimples exhibited better tribological properties at high temperature than at room temperature. The average friction coefficients of the as-prepared samples were about 0.13 and 0.15 at high temperature and room temperature, respectively, which were 27.8% and 16.7% lower than that of the original cylinder, respectively. Moreover, compared with the original cylinder, the anti-adhesion time of the as-prepared sample increased 2.3-fold. Additionally, the reduced viscosity of the lubricating oil caused by high temperature accelerated the erosion effect and release rate of the solid lubricant in the dimples. Thus, the polar additives in the lubricating oil and the chemical reactions between the cylinder substrates and solid lubricants that WS(2) released from the dimples are the main factors in friction reduction. This study provides some guidance for anti-friction design of cylinders under high temperature conditions. |
---|