Cargando…

All-Solid State Potentiometric Sensors for Desvenlafaxine Detection Using Biomimetic Imprinted Polymers as Recognition Receptors

Using single-walled carbon nanotubes (SWCNTs) as an ion-to-electron transducer, a novel disposable all-solid-state desvenlafaxine-selective electrode based on a screen-printed carbon paste electrode was created. SWCNTs were put onto the carbon-paste electrode area, which was protected by a poly (vin...

Descripción completa

Detalles Bibliográficos
Autores principales: Bajaber, Majed A., Kamel, Ayman H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693087/
https://www.ncbi.nlm.nih.gov/pubmed/36432940
http://dx.doi.org/10.3390/polym14224814
Descripción
Sumario:Using single-walled carbon nanotubes (SWCNTs) as an ion-to-electron transducer, a novel disposable all-solid-state desvenlafaxine-selective electrode based on a screen-printed carbon paste electrode was created. SWCNTs were put onto the carbon-paste electrode area, which was protected by a poly (vinyl chloride) (PVC) membrane with a desvenlafaxine-imprinted polymer serving as a recognition receptor. Electrochemical impedance spectroscopy and chronopotentiometric techniques were used to examine the electrochemical characteristics of the SWCNTs/PVC coating on the carbon screen-printed electrode. The electrode displayed a 57.2 ± 0.8 mV/decade near-Nernstian slope with a 2.0 × 10(−6) M detection limit. In 10 mM phosphate buffer, pH 6, the ODV-selective electrodes displayed a quick reaction (5 s) and outstanding stability, repeatability, and reproducibility. The usefulness of electrodes was demonstrated in samples of ODV-containing pharmaceutical products and human urine. These electrodes have the potential to be mass produced and employed as disposable sensors for on-site testing, since they are quick, practical, and inexpensive.