Cargando…
Antagonistic Effect of Trichoderma longibrachiatum (TL6 and TL13) on Fusarium solani and Fusarium avenaceum Causing Root Rot on Snow Pea Plants
Snow pea root rot in China is caused by Fusarium solani (FSH) and Fusarium avenaceum (FAH), which affect snow pea production. The chemical control methods used against FSH and FAH are toxic to the environment and resistance may be developed in persistence applications. Therefore, an alternative appr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693188/ https://www.ncbi.nlm.nih.gov/pubmed/36354916 http://dx.doi.org/10.3390/jof8111148 |
Sumario: | Snow pea root rot in China is caused by Fusarium solani (FSH) and Fusarium avenaceum (FAH), which affect snow pea production. The chemical control methods used against FSH and FAH are toxic to the environment and resistance may be developed in persistence applications. Therefore, an alternative approach is needed to control these pathogens. This study focuses on Trichoderma longibrachiatum strains (TL6 and TL13), mycoparasitic mechanisms of FSH and FAH, as well as growth-promoting potentials on snow pea seedlings under FSH and FAH stress at the physiological, biochemical, and molecular levels. The average inhibitory rates of TL6 against FSH and FAH were 54.58% and 69.16%, respectively, on day 7. Similarly, TL13 average inhibitory rates against FSH and FAH were 59.06% and 71.27%, respectively, on day 7. The combined TL13 and TL6 with FSH and FAH reduced disease severity by 86.6, 81.6, 57.60, and 60.90%, respectively, in comparison to the controls. The snow pea plants inoculated with FSH and FAH without TL6 and TL13 increased malondialdehyde (MDA) and hydrogen peroxide (H(2)O(2)) contents in the leaves by 64.8, 66.0, 64.4 and 65.9%, respectively, compared to the control. However, the combined FSH and FAH with TL6 and TL13 decreased the MDA and H(2)O(2) content by 75.6, 76.8, 70.0, and 76.4%, respectively, in comparison to the controls. In addition, the combined TL6 + FSH and TL6 + FAH increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 60.5, 64.7, and 60.3%, respectively, and 60.0, 64.9, and 56.6%, respectively, compared to the controls. Again, compared to the controls, the combined TL13 + FSH and TL13 + FAH increased the activity of SOD, POD, and CAT by 69.7, 68.6, and 65.6%, respectively, and 70.10, 69.5, and 65.8%, respectively. Our results suggest that the pretreatment of snow pea seeds with TL6 and TL13 increases snow pea seedling growth, controls FSH and FAH root rot, increases antioxidant enzyme activity, and activates plant defense mechanisms. The TL13 strain had the greatest performance in terms of pathogen inhibition and snow pea growth promotion compared to the TL6 strain. |
---|