Cargando…
Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images
Strawberry (Fragaria × ananassa Duch) plants are vulnerable to climatic change. The strawberry plants suffer from heat and water stress eventually, and the effects are reflected in the development and yields. In this investigation, potential chlorophyll-fluorescence-based indices were selected to de...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693209/ https://www.ncbi.nlm.nih.gov/pubmed/36433302 http://dx.doi.org/10.3390/s22228706 |
_version_ | 1784837479247904768 |
---|---|
author | Poobalasubramanian, Mangalraj Park, Eun-Sung Faqeerzada, Mohammad Akbar Kim, Taehyun Kim, Moon Sung Baek, Insuck Cho, Byoung-Kwan |
author_facet | Poobalasubramanian, Mangalraj Park, Eun-Sung Faqeerzada, Mohammad Akbar Kim, Taehyun Kim, Moon Sung Baek, Insuck Cho, Byoung-Kwan |
author_sort | Poobalasubramanian, Mangalraj |
collection | PubMed |
description | Strawberry (Fragaria × ananassa Duch) plants are vulnerable to climatic change. The strawberry plants suffer from heat and water stress eventually, and the effects are reflected in the development and yields. In this investigation, potential chlorophyll-fluorescence-based indices were selected to detect the early heat and water stress in strawberry plants. The hyperspectral images were used to capture the fluorescence reflectance in the range of 500 nm–900 nm. From the hyperspectral cube, the region of interest (leaves) was identified, followed by the extraction of eight chlorophyll-fluorescence indices from the region of interest (leaves). These eight chlorophyll-fluorescence indices were analyzed deeply to identify the best indicators for our objective. The indices were used to develop machine-learning models to assess the performance of the indicators by accuracy assessment. The overall procedure is proposed as a new workflow for determining strawberry plants’ early heat and water stress. The proposed workflow suggests that by including all eight indices, the random-forest classifier performs well, with an accuracy of 94%. With this combination of the potential indices, namely the red-edge vegetation stress index (RVSI), chlorophyll B (Chl-b), pigment-specific simple ratio for chlorophyll B (PSSR(b)), and the red-edge chlorophyll index (CI(REDEDGE)), the gradient-boosting classifier performs well, with an accuracy of 91%. The proposed workflow works well with a limited number of training samples which is an added advantage. |
format | Online Article Text |
id | pubmed-9693209 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96932092022-11-26 Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images Poobalasubramanian, Mangalraj Park, Eun-Sung Faqeerzada, Mohammad Akbar Kim, Taehyun Kim, Moon Sung Baek, Insuck Cho, Byoung-Kwan Sensors (Basel) Article Strawberry (Fragaria × ananassa Duch) plants are vulnerable to climatic change. The strawberry plants suffer from heat and water stress eventually, and the effects are reflected in the development and yields. In this investigation, potential chlorophyll-fluorescence-based indices were selected to detect the early heat and water stress in strawberry plants. The hyperspectral images were used to capture the fluorescence reflectance in the range of 500 nm–900 nm. From the hyperspectral cube, the region of interest (leaves) was identified, followed by the extraction of eight chlorophyll-fluorescence indices from the region of interest (leaves). These eight chlorophyll-fluorescence indices were analyzed deeply to identify the best indicators for our objective. The indices were used to develop machine-learning models to assess the performance of the indicators by accuracy assessment. The overall procedure is proposed as a new workflow for determining strawberry plants’ early heat and water stress. The proposed workflow suggests that by including all eight indices, the random-forest classifier performs well, with an accuracy of 94%. With this combination of the potential indices, namely the red-edge vegetation stress index (RVSI), chlorophyll B (Chl-b), pigment-specific simple ratio for chlorophyll B (PSSR(b)), and the red-edge chlorophyll index (CI(REDEDGE)), the gradient-boosting classifier performs well, with an accuracy of 91%. The proposed workflow works well with a limited number of training samples which is an added advantage. MDPI 2022-11-11 /pmc/articles/PMC9693209/ /pubmed/36433302 http://dx.doi.org/10.3390/s22228706 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Poobalasubramanian, Mangalraj Park, Eun-Sung Faqeerzada, Mohammad Akbar Kim, Taehyun Kim, Moon Sung Baek, Insuck Cho, Byoung-Kwan Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images |
title | Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images |
title_full | Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images |
title_fullStr | Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images |
title_full_unstemmed | Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images |
title_short | Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images |
title_sort | identification of early heat and water stress in strawberry plants using chlorophyll-fluorescence indices extracted via hyperspectral images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693209/ https://www.ncbi.nlm.nih.gov/pubmed/36433302 http://dx.doi.org/10.3390/s22228706 |
work_keys_str_mv | AT poobalasubramanianmangalraj identificationofearlyheatandwaterstressinstrawberryplantsusingchlorophyllfluorescenceindicesextractedviahyperspectralimages AT parkeunsung identificationofearlyheatandwaterstressinstrawberryplantsusingchlorophyllfluorescenceindicesextractedviahyperspectralimages AT faqeerzadamohammadakbar identificationofearlyheatandwaterstressinstrawberryplantsusingchlorophyllfluorescenceindicesextractedviahyperspectralimages AT kimtaehyun identificationofearlyheatandwaterstressinstrawberryplantsusingchlorophyllfluorescenceindicesextractedviahyperspectralimages AT kimmoonsung identificationofearlyheatandwaterstressinstrawberryplantsusingchlorophyllfluorescenceindicesextractedviahyperspectralimages AT baekinsuck identificationofearlyheatandwaterstressinstrawberryplantsusingchlorophyllfluorescenceindicesextractedviahyperspectralimages AT chobyoungkwan identificationofearlyheatandwaterstressinstrawberryplantsusingchlorophyllfluorescenceindicesextractedviahyperspectralimages |