Cargando…
On the Theory of Magnetoelectric Coupling in Fe(2)Mo(3)O(8)
In the last decade, Fe(2)Mo(3)O(8) was recognized for a giant magnetoelectric effect, the origin of which is still not clear. In the present paper, we contribute to the microscopic theory of the magnetoelectric coupling in this compound. Using crystal field theory and the molecular field approximati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693282/ https://www.ncbi.nlm.nih.gov/pubmed/36431713 http://dx.doi.org/10.3390/ma15228229 |
Sumario: | In the last decade, Fe(2)Mo(3)O(8) was recognized for a giant magnetoelectric effect, the origin of which is still not clear. In the present paper, we contribute to the microscopic theory of the magnetoelectric coupling in this compound. Using crystal field theory and the molecular field approximation, we calculated the low-lying energy spectrum for iron ions and their interaction with electric and magnetic fields. Classical ionic contribution to the electric polarization related to the ionic shifts is also estimated. It is found that the electronic and ionic contributions to the electric polarization are comparable and these mechanisms support each other at [Formula: see text]. The suggested electronic mechanism provides insight into the nature of huge jumps in polarization upon phase transitions from paramagnetic (PM) to antiferromagnetic (AFM) and then to ferrimagnetic (FRM) states under an applied external magnetic field as well as the large differential magnetoelectric coefficient. |
---|