Cargando…

Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model

Considering the influence of measurement error on target state estimation, there is an uncertain dispersion region for target position estimate, that is, the area of uncertainty (AOU, area of uncertainty). In underwater target tracking, the state estimation is point estimation without AOU estimation...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Shasha, Wang, Haiyan, Shen, Xiaohong, Sun, Zhenxin, Sun, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693286/
https://www.ncbi.nlm.nih.gov/pubmed/36433432
http://dx.doi.org/10.3390/s22228837
_version_ 1784837501644439552
author Ma, Shasha
Wang, Haiyan
Shen, Xiaohong
Sun, Zhenxin
Sun, Ning
author_facet Ma, Shasha
Wang, Haiyan
Shen, Xiaohong
Sun, Zhenxin
Sun, Ning
author_sort Ma, Shasha
collection PubMed
description Considering the influence of measurement error on target state estimation, there is an uncertain dispersion region for target position estimate, that is, the area of uncertainty (AOU, area of uncertainty). In underwater target tracking, the state estimation is point estimation without AOU estimation and its accuracy is poor in the early stage because of large measurement errors. Fast tracking with higher accuracy and AOU estimation are of great significance to time-sensitive target tracking. To improve the state estimation accuracy in the early stage, and estimate the AOU, a method of AOU estimation of underwater moving target is presented based on a stochastic maneuvering motion (SMM, stochastic maneuvering motion) model. The stochastic maneuvering motion model is established based on the Langevin equation to reflect the movement characteristics of an underwater moving target. Then, the target state is estimated with a noise adaptive Kalman filter by constructing the measurement equation and state equation according to measurement error characteristic and stochastic maneuvering model. Based on the physical significance of the error covariance matrix from the Kalman filter, the parameters of AOU are deduced. Simulation results of underwater target tracking and AOU estimation are presented to demonstrate the relative performance of the proposed algorithm compared with the adaptive Kalman filter. It is clearly shown from the results that SMM tracking algorithm achieves higher accuracy of state estimation in the initial stage of tracking, and the predicted AOU is consistent with the actual distribution of underwater moving targets while yielding more concentrated distribution, which reveals that estimated AOU can be precisely represented by the confidence ellipses. The presented approach and obtained results may be useful in time-sensitive target threat analysis and weapon strike applications.
format Online
Article
Text
id pubmed-9693286
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96932862022-11-26 Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model Ma, Shasha Wang, Haiyan Shen, Xiaohong Sun, Zhenxin Sun, Ning Sensors (Basel) Article Considering the influence of measurement error on target state estimation, there is an uncertain dispersion region for target position estimate, that is, the area of uncertainty (AOU, area of uncertainty). In underwater target tracking, the state estimation is point estimation without AOU estimation and its accuracy is poor in the early stage because of large measurement errors. Fast tracking with higher accuracy and AOU estimation are of great significance to time-sensitive target tracking. To improve the state estimation accuracy in the early stage, and estimate the AOU, a method of AOU estimation of underwater moving target is presented based on a stochastic maneuvering motion (SMM, stochastic maneuvering motion) model. The stochastic maneuvering motion model is established based on the Langevin equation to reflect the movement characteristics of an underwater moving target. Then, the target state is estimated with a noise adaptive Kalman filter by constructing the measurement equation and state equation according to measurement error characteristic and stochastic maneuvering model. Based on the physical significance of the error covariance matrix from the Kalman filter, the parameters of AOU are deduced. Simulation results of underwater target tracking and AOU estimation are presented to demonstrate the relative performance of the proposed algorithm compared with the adaptive Kalman filter. It is clearly shown from the results that SMM tracking algorithm achieves higher accuracy of state estimation in the initial stage of tracking, and the predicted AOU is consistent with the actual distribution of underwater moving targets while yielding more concentrated distribution, which reveals that estimated AOU can be precisely represented by the confidence ellipses. The presented approach and obtained results may be useful in time-sensitive target threat analysis and weapon strike applications. MDPI 2022-11-15 /pmc/articles/PMC9693286/ /pubmed/36433432 http://dx.doi.org/10.3390/s22228837 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ma, Shasha
Wang, Haiyan
Shen, Xiaohong
Sun, Zhenxin
Sun, Ning
Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model
title Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model
title_full Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model
title_fullStr Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model
title_full_unstemmed Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model
title_short Research on Area of Uncertainty of Underwater Moving Target Based on Stochastic Maneuvering Motion Model
title_sort research on area of uncertainty of underwater moving target based on stochastic maneuvering motion model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693286/
https://www.ncbi.nlm.nih.gov/pubmed/36433432
http://dx.doi.org/10.3390/s22228837
work_keys_str_mv AT mashasha researchonareaofuncertaintyofunderwatermovingtargetbasedonstochasticmaneuveringmotionmodel
AT wanghaiyan researchonareaofuncertaintyofunderwatermovingtargetbasedonstochasticmaneuveringmotionmodel
AT shenxiaohong researchonareaofuncertaintyofunderwatermovingtargetbasedonstochasticmaneuveringmotionmodel
AT sunzhenxin researchonareaofuncertaintyofunderwatermovingtargetbasedonstochasticmaneuveringmotionmodel
AT sunning researchonareaofuncertaintyofunderwatermovingtargetbasedonstochasticmaneuveringmotionmodel