Cargando…
A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design
Accurately predicting ligand binding affinity in a virtual screening campaign is still challenging. Here, we developed hybrid neural network (HNN) machine deep learning methods, HNN-denovo and HNN-affinity, by combining the 3D-CNN (convolutional neural network) and the FFNN (fast forward neural netw...
Autores principales: | Limbu, Sarita, Dakshanamurthy, Sivanesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693376/ https://www.ncbi.nlm.nih.gov/pubmed/36430386 http://dx.doi.org/10.3390/ijms232213912 |
Ejemplares similares
-
Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method
por: Limbu, Sarita, et al.
Publicado: (2022) -
Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach
por: Limbu, Sarita, et al.
Publicado: (2023) -
Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method
por: Limbu, Sarita, et al.
Publicado: (2022) -
IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method
por: Suri, Sadhana, et al.
Publicado: (2022) -
DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity
por: Ahmed, Asad, et al.
Publicado: (2021)